
J. Fluid Mech. (1995), vol. 284, pp. 215-321 
Copyright 0 1995 Cambridge University Press 

275 

Asymptotic vorticity structure and numerical 
simulation of slender vortex filaments 

By RUPERT KLEIN' AND OMAR M. KNIO' 
Institut fur Technische Mechanik, RWTH, Templergraben 64, 52056 Aachen, Germany 

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, 
MD 21218, USA 

(Received 3 June 1994 and in revised form 6 September 1994) 

A new asymptotic analysis of slender vortices in three dimensions, based solely on 
the vorticity transport equation and the non-local vorticity-velocity relation gives new 
insight into the structure of slender vortex filaments. The approach is quite different 
from earlier analyses using matched asymptotic solutions for the velocity field and it 
yields additional information. This insight is used to derive three different modifications 
of the thin-tube version of a numerical vortex element method. Our modifications 
remove an O(1) error from the node velocities of the standard thin-tube model and 
allow us to properly account for any prescribed physical vortex core structure 
independent of the numerical vorticity smoothing function. We demonstrate the 
performance of the improved models by comparison with asymptotic solutions for 
slender vortex rings and for perturbed slender vortex filaments in the Klein-Majda 
regime, in which the filament geometry is characterized by small-amplitudeshort- 
wavelength displacements from a straight line. These comparisons represent a stringent 
mutual test for both the proposed modified thin-tube schemes and for the Klein-Majda 
theory. Importantly, we find a convincing agreement of numerical and asymptotic 
predictions for values of the Klein-Majda expansion parameter e as large as f .  Thus, 
our results support their findings in earlier publications for realistic physical vortex 
core sizes. 

1. Introduction 
A slender vortex flow as sketched in figure 1 is characterized by a vorticity 

distribution that is highly concentrated in the vicinity of a smooth time-dependent 
curve L(t) : s + X(s, t). A typical diameter d of the vortex core is small compared to a 
characteristic radius of curvature R of L(t). Thus the dimensionless parameter S = d / R  
satisfies 

An important application for the theory of slender vortices is the prediction of the 
behaviour of the trailing vortices behind aircraft wings (Crow 1970; Ting 1971; 
Widnall 1975 and references therein). Chorin (1982) and Chorin & Aka0 (1991) suggest 
that slender vortices play an important role in governing the structure of turbulent 
flows, and Pumir & Siggia (1990) propose that the interaction of slender vortices may 
lead to the collapse of solutions to the fluid equations. In addition, slender vortices 
represent a class of flow fields that allows one to study fundamental aspects of fluid 
mechanics such as vortex (self-) stretching and the often-cited energy transfer in 
wavenumber space in a specialized framework (Klein & Majda 1991 a, b, 1993 ; Klein, 

& = d / R <  1. (1.1) 
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FIGURE 1. Section of a slender vortex with the vorticity concentrated in a thin tube of characteristic 
diameter d centred around a smooth time-dependent curve L(t) with characteristic radius of curvature 
R >> d. 

Majda & McLaughlin, 1992). Thus, there is ample motivation for studies of the 
dynamics of slender vortex filaments. 

Early, more or less heuristic attempts at deriving suitable evolution equations for 
slender vortices in three space dimensions involved the local induction approximation, 
which is based on neglecting all non-local effects of vortex self-induction (Arms & 
Hama 1965). Systematic analyses using methods of matched asymptotic expansions 
revealed the precise mathematical form of the non-local induction terms in the filament 
equation of motion (Ting 1971 ; Callegari & Ting 1978) and the extended asymptotic 
and numerical studies by Klein & Majda (1991a, b) showed their significance in 
generating several well-known fluid-mechanical phenomena. The search for reliable 
predictions of vortex filament dynamics also included studies based on numerical 
techniques. The review article by Leonard (1985) summarizes several earlier approaches 
and we mention in addition the work by Liu, Tavantsis & Ting (1986) who 
implemented numerically the system of equations derived through systematic 
asymptotic analyses by Callegari & Ting (1978) and the thin-tube model approach used 
by Knio & Ghoniem (1990), which is the basis for the numerical methods discussed in 
the present work. 

Detailed asymptotic analyses, e.g. by Callegari & Ting (1978), Ting & Klein (1991) 
or Klein & Majda (1991 a) and the present derivations in 92 of this paper, show that 
under certain conditions of quasi-steadiness the reference line L(t) of a slender vortex 
moves in space according to the propagation law 

r X, = &(ln (2/6) + C )  ~b + Q f ( X ) .  

Here T is the overall circulation of the vortex, K and b are the local curvature and unit 
binormal vector at Xon L(t), respectively. The quantity C is a core structure coefficient 
defined by 

where do)(q t), w(O)(r, t) are the leading-order axisymmetric axial and circumferential 
velocities in the vortex core and r =  r / 6  is a stretched radial coordinate in the planes 
normal to L(t). The last contribution Qf in (1.2) is the so-called finite part of the line 
Biot-Savart integral which represents the influence of non-local self-induction of the 
vortex. We provide a precise definition of Qf in 92. 



Structure and simulation of slender vortex filaments 277 

FIGURE 2. Filament-attached coordinates following Callegari & Ting (1978). 

The formulae in (1.2) and (1.3) reveal the major difficulties associated with the 
mathematical description of slender vortices. 

(i) The leading term in 6 in (1.2) is of order (I ' /R) In (1/6), which is about one order 
of magnitude smaller than the maximum circumferential velocities in the vortical core. 
The latter are of O(T/d )  = O((l/a)(r/R)), in accordance with the scaling behaviour of 
a potential vortex. Thus, the net motion of the filament in space is the result of a subtle 
cancellation of much larger velocities in the core. This feature results in a stiff nature 
of the governing equations in the small4 limit. 

(ii) The second term in (1.2) involves the local core structure coefficient, C, from 
(1.3). This term is as large, namely of O(l), as the non-local contribution Qf and should 
therefore not be neglected. Keeping this term, however, requires an accurate 
representation of the vortex core structure, or at least of the integral quantity C, and 
makes an ad hoc approximation of the local induction effects unacceptable. 

(iii) The finite part of the line Biot-Savart integral Qf in (1.2) is a complex non-local 
and nonlinear expression that involves the principal value of a singular integral. The 
numerical evaluation of such an expression is a stiff procedure and should be avoided 
if possible. 

One of the goals of this paper is to develop a suitable modification of the thin-tube 
version of a general vortex element solver which (a) removes part of the stiffness 
associated with (i) above, (b) allows us to accurately represent the influence of the 
vortex core structure on the filament motion including a non-trivial axial flow, and (c) 
yields an asymptotically correct representation of the non-local induction effects. The 
idea is to first perform a detailed asymptotic analysis of slender vortex solutions 
of the fluid equations in the vorticity-velocity formulation and then to implement the 
knowledge gained in the thin-tube version of a numerical vortex element scheme. 
In the next paragraphs we first explain our new asymptotic approach and then 
summarize the design of the numerical method and of its asymptotics-induced 
modifications. 

Summary of the asymptotic analysis 
In $92 and 3 we analyse the vorticity transport equation for inviscid flow: 

O,+(U.V)W = (O.V)U, (1.4) 
and the nonlinear-nonlocal velocity-vorticity relation : 

which we call the three-dimensional Biot-Savart integral henceforth. We consider 
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special solutions of (1.4), (1.5) with the following asymptotic structure. We let S < 1 
from (1.1) be a small expansion parameter, L(t) : s + X(s, t )  the time-dependent 
filament reference curve and Y, 8, s the filament-attached coordinate system as sketched 
in figure 2 (see also Callegari & Ting 1978). Each plane normal to the reference curve 
at X(s, t),  say, is spanned by cylindrical coordinates Y, 8. Here 8 is a circumferential 
angle with the line 8 = 0 in each normal plane chosen such that at all times (r,  8, s) are 
orthogonal (see also 93). Then we consider flow fields with vorticity distributions 
concentrated in the vicinity of L(t), so that 

1 
o(x, t ; 8) = s2 ( ~ ( ' ) ( r / 8 ,  s, t )  e, + Y(O)(r/S, s, t )  t )  

+ O( 1). (1.6) 
Here ((i), v(*), p) are asymptotic expansion functions for the radial, circumferential and 
axial vorticity components in the vortex core, respectively, and e,, e,, t are the mutually 
orthogonal radial, circumferential and axial unit vectors. Notice that y(O)(K s, t ) ,  
Y(')(F, s, t),  with F =  r /S ,  are assumed not to depend on 8, so that the leading-order 
core structure is axisymmetric. Furthermore in (1.6), time is normalized by the 

(1.7) 
reference time 

tTef = 47cR2/r, 
which is larger by two orders of magnitude than the characteristic turnover time of the 
vortex core, t,,,, = 4 n d 2 / r .  Thus, we assume a smooth evolution of the filament 
geometry and an associated quasi-steady behaviour of the vortex core. 

The general task of an asymptotic analysis is then to derive (a)  an equation of motion 
for L(t) in terms of the leading-order core structure and the instantaneous curve 
geometry, and (b)  associated evolution equations for the leading-order core structure. 
Here we concentrate on the first part, the equation of motion for L(t), because the 
results of this analysis will be crucial in deriving the desired improvement of the thin- 
tube numerical scheme. That is, in this paper we consider the leading-order core 
structure to be given and we provide an accurate description of the filament motion 
under that premise. In fact, in all explicit examples of 95, the core structure is 
asymptotically constant on the timescales considered (see Klein & Majda 1991 a), 
consistent with the Euler equations. More general situations with vortex stretching and 
viscous diffusion playing a non-trivial role will be considered in the near future (see 
Klein, Ting & Knio 1994). 

We insert the ansatz (1.6) into the three-dimensional Biot-Savart integral and obtain 
a general asymptotic expression for the induced velocities on L(t) in (1.2). At this stage 
of the calculation, the core coefficient C is expressed in terms of the leading- and first- 
order axial vorticities as 

Here e;(q t )  is the first cosine Fourier mode with respect to 8 of the first-order axial 
vorticity, defined by the relation 

Q1) = cji) cos (j8) + l$) sin (j8). (1.9) 
j 

Two observations regarding (1.2) in connection with (1.8) have led us to the 
modified thin-tube vortex element schemes proposed in this paper. Let &t) be a space 
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curve that is displaced from the filament reference line L(t)  by a distance of O(62). Then 
one finds that: 

(i) The formulae (1.2) and (1.8) also yield the induced velocities on i ( t ) ,  provided 
that a representation @(Y, t )  for the contribution of the first-order vorticity is 
introduced which is valid in the coordinate frame attached to E(t). The difference 
between G:) and e2 simply corresponds to an O(S2) spatial displacement of the leading- 
order axisymmetric core structure. 

(ii) The induced velocities at points on L(t)  and L(t) differ by 0(1) due to this 
difference between <::) and @? or, equivalently, they differ due to the large velocity 
gradient of O(K2) in the core. 

In 0 3 we use the fact that there must be a particular curve L"(t) in an inner O(d2) core 
of the filament on which the induced velocity coincides with the speed of points on L(t)  
except for an irrelevant axial velocity component. We call Lst(t) the connecting line of 
local stagnation points in the moving frame of reference and show that the core 
coefficient C associated with L"(t) has the representation announced in (1.3). 

Improvement of the thin-tube model (ttm) 
Various techniques for the numerical simulation of vortex dynamics have been 

proposed in the literature, e.g. by Chorin (1980), Beale & Majda (1985) or Knio & 
Ghoniem (1990). Here we concentrate on the thin-tube vortex element scheme (ttrn) 
proposed by Knio & Ghoniem which is a simplified version of Beale & Majda's well- 
analysed general vortex element method for three-dimensional incompressible flows. 
The scheme represents a slender vortex by a single chain of overlapping vortex 
elements. The elements are characterized by a common circulation r, by the time- 
dependent end points of associated filament line segments (Xi(t)}E1 and by a prescribed 
spherically symmetric and rapidly decaying vorticity smoothing function fsttm. Here Prn 
is a numerical core size parameter whose relation to the physical slender vortex core 
structure remains to be established. At any given time, the vorticity distribution of the 
slender vortex is approximated by 

(1.10) 

This distribution is evolved in time by moving the nodes xi(t) in a Lagrangian fashion. 
Thus, to advance the solution in time, one integrates the ordinary differential 
equations : 

(1.11) 

where 0: is the velocity at xi induced by the vorticity distribution (1.10). In this fashion, 
the approximate filament geometry is updated from one time step to the next. 

One key advantage of the underlying vortex element method that is inherited by the 
simplified thin-tube model is the numerically exact integration of the three-dimensional 
Biot-Savart integral (1.5) for the nodes xi(t), given the vorticity distribution in (1.10). 
Observing that the non-local finite part Qf of the line Biot-Savart integral in (1.2) 
would be the same for all the points in a given cross-section of the vortex core, we 
notice that the evaluation of (1.5) at the nodes will incorporate automatically a highly 
accurate approximation for Qf. Only the local induction effects need to be analysed in 
more detail. 

There is a close relationship between this numerical method for vortex filament 
computations and the asymptotic theory discussed in the previous paragraphs. Both 
theories are based on the vorticity-velocity formulation for inviscid flows, assume a 
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quasi-steady vortex core structure and rely on a suitable evaluation of the Biot-Savart 
integral in order to arrive at an expression for the local velocity of points on the 
filament reference line. We will explore this conceptual similarity in this paper in order 
to (i) reveal and remedy the deficiencies of the numerical method using new insight from 
an asymptotic limit consideration and (ii) to assess the regime of applicability of the 
asymp totics. 

In $4 we present a detailed asymptotic analysis of the thin-tube vortex element 
scheme. By comparing the numerical vortex core structure with the asymptotic 
predictions from $52 and 3 we find that the vortex element nodes lie on a curve Lttm(t) 
that differs from the connecting line of stagnation points Lst(t) by an O(#) distance. 
Argument (ii) above then implies that the computed induced velocities at the nodes are 
not the desired filament velocities. In fact, an O( 1) velocity error occurs due to a false 
(or 'inconsistent') representation of the local induction. This error can be corrected in 
various ways, three of which we discuss and test in this work. The first is an explicit 
additive correction of the induced velocities at the vortex element nodes. The second 
relies on evaluating the induced velocities not at the vortex element nodes but on those 
points on L"(t) that are closest to the nodes. For the second method we derive and 
implement asymptotic expressions for the node-to-stagnation point distance. Finally, 
a third correction method is derived which is based on an appropriate rescaling of the 
numerical core size parameter Prn so that local induction effects are properly 
accounted for. 

We emphasize again that in the present paper we concentrate on a regime where the 
leading-order vortex core structure would not change appreciably on the timescales 
considered, so that it is identical to the initial core vorticity distribution. The latter can 
be assumed given through a suitable choice of the initial data for the flow. An extension 
to regimes with non-trivial evolution of the vortex cores due to vortex stretching and 
viscous diffusion is currently being developed (Klein et al. 1994). 

The comparison of numerical predictions and asymptotic analysis 
Section 5 contains detailed comparisons of the standard and corrected thin-tube 

models with slender vortex asymptotics. We consider perturbed slender vortices in the 
Klein-Majda regime, which we summarize in the next paragraph and explain in more 
detail in $2. In $6,  in the framework of a general discussion of the achievements of this 
work, we demonstrate the aforementioned O(1) error of the standard thin-tube model 
by evaluating the velocity of thin vortex rings. 

Klein & Majda (1991 a, b) analyse a particular regime for slender vortex flows by 
combining and extending the matched asymptotic analysis of Callegari & Ting (1978) 
and Hasimoto's transformation (Hasimoto 1972). The resulting theory yields an 
improved understanding of the effects of nonlinear-non-local interactions on the 
dynamics of perturbed slender vortices. Slender vortices in the Klein-Majda regime are 
characterized by small-amplitude geometric perturbations that are superimposed on 
otherwise straight filaments. In this regime the amplitudes and wavelengths of these 
displacements are assumed to be large compared to the vortex core size, but still small 
compared to a typical radius of curvature of the filament reference line. Specifically, 
when E = h / R  is the ratio of a typical perturbation wavelength to the characteristic 
radius of curvature of the filament, then the displacement amplitudes are of order e2R, 
and E is related to the core size parameter 6 through the distinguished limit 

(1.12) 
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Klein & Majda (1991 a)  show that this relation guarantees non-trivial interactions of 
nonlinear curvature effects with the non-locality from the finite part of the Biot-Savart 
integral for which a linearized expression, valid in the limit of c +  0, is given. 

The comparison of modified thin-tube vortex element predictions with the 
Klein-Majda asymptotics represents a stringent mutual test for these two very different 
approaches. We first present static comparisons of the predicted filament velocities 
based on prescribed geometries, which later serve as initial data for dynamical 
computations. An important aspect of these comparisons concerns the range of vortex 
core sizes that we choose and the ranges of applicability of the numerics and 
asymptotics. The slender vortex asymptotics is designed for the limit of small core sizes 
so that its reliability improves as 6 diminishes. On the other hand, vortex element thin- 
tube model computations become unaffordable owing to increasing resolution and 
time step requirements as the core size decreases. In our example calculations of $ 5 ,  we 
choose core sizes for which the expansion parameter 6 from (1.12) is as large as i. 
Nevertheless, we achieve quite a convincing agreement between the asymptotic and 
numerical predictions. Thus, with the slender vortex asymptotics one has another 
example where asymptotic predictions yield unexpectedly accurate results at the formal 
border of their regime of applicability. 

2. Basic considerations 
2.1. Formulation 

As previously mentioned, two modelling approaches are adopted in this paper to 
analyse the motion of slender vortex filaments. In the first approach, matched 
asymptotic expansions are used to reduce the governing equations to a simplified 
‘filament equation’ for a scalar complex function $i that contains all the geometrical 
information of the filament reference line. The second approach is a three-dimensional 
simulation based on a vortex element method. 

Our new derivation of the asymptotic filament equations starts with the three- 
dimensional momentum equations in vorticity-velocity formulation : 

aw 1 
at  Re 
- + v . v w  = 0-vv + - V 2 q  

v(x, t )  = -- ( x - Y )  O0.1) d,,, 
4 n S  IX-YI3 

where v = (u, v, w) is the velocity, w = V x v is the vorticity, t is time, and Re is the 
Reynolds number. The equations are normalized with respect to the reference length 
and velocity scales, 

L“ = k e f ,  (2.3) 

P = r~ref/(47~), (2.4) 
where qef is a characteristic curvature of the filament reference line and r its 
circulation. We focus our attention on the high-Reynolds-number limit of the 
governing equations and consider filament configurations such that the core size of the 
filament 6 = O(Re-’/’) is much smaller than the characteristic perturbation wavelength, 
which in turn is dominated by L”. These assumptions enable us to use techniques of 
multiple scales asymptotics in order to analyse the filament dynamics (Klein 1994; 
Klein et al. 1994). We provide a summary of the key ideas, techniques and results which 
are of relevance to the present work in 92.1. 
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transport equation : 

i.e. on (2.1) in the limit Re + 00. Here, D / D t  = a/& + v .  V denotes the material time 
derivative. Implementation of three-dimensional vortex filament schemes to model 
solutions of (2.5) is summarized in 94. 

R.  Klein and 0. M .  Knio 

Vortex filament computations are based on the inviscid incompressible vorticity 

D o / D t  = o*VU, (2.5) 

2.2. The Klein-Majda regime for  perturbed slender vortices 
In this section we summarize the results of the analyses by Klein & Majda (1991 a, b) 
dealing with a special class of slender vortex flows involving at leading-order straight 
vortex filaments that are subjected to small-amplitude displacements. In this regime the 
displacements of the vortex reference lines away from the straight reference lines may 
be, but do not have to be, large compared to the vortex core size, but they must be small 
compared to a typical perturbation wavelength. In turn, the perturbation wavelengths 
are small compared to a characteristic filament radius of curvature. Thus, with lengths 
measured on the curvature scale, we consider small-amplitude, short-wavelength 
displacements of a slender columnar vortex. In this work, we will concentrate on the 
case of an isolated filament in a quiescent environment, but it should be noticed that 
the general theory presented in Klein & Majda (1991 a, b, 1993) and Klein et al. (1992) 
allows one to also describe the dynamics of filaments embedded in a simple straining 
environment as well as the interaction of parallel/antiparallel pairs of slender vortices. 

In 93 we will re-derive, by a new asymptotic analysis which emphasizes the vorticity 
structure of slender vortices, a vortex filament evolution equation with the general 
form 

with e2 defined in (1.12). The first term is the product of the filament curvature K and 
the local binormal unit vector b and it corresponds to the well-known local induction 
approximation (see Batchelor 1967). The second term includes the effects of non-local 
self-induction and it is scaled in the analysis to be of order unity. The Klein-Majda 
regime involves slender vortex filaments whose reference lines, Le((t) : s + X(s, t ; e), are 
described by 

(2.7) 

Here we have introduced the scaled space and time coordinates 

X(S, t ;  €) = €gto + €2X(2)(fT, 7 )  + O(€2) (€ < 1). 

CT = S / E  and T = t /s4,  (2.8) 

which appropriately resolve the characteristic length- and timescales in this regime. It 
has been shown that the core structure coefficient C, which enters in the E-8 
relationship (1.12), is constant on the characteristic time of evolution of the filament 
perturbations, i.e. on the timescale of T (Klein & Majda 1991 a). 

With to being a constant unit vector, (2.7) is a suitable representation of small- 
amplitude, short-wavelength perturbations of a leading-order straight filament. Notice 
that 1 % e2 % 6 ;  thus, the theory accommodates displacements of the vortex which are 
large compared to a typical core diameter when IX(')l = O(1). However, the theory is 
uniformly valid in the limit IX(')l < 1, so that the displacements do not have to be large 
compared to the vortex core size. In fact, Klein & Majda (1993) analyse parallel pairs 
of vortex filaments with the same methodology described in this section. For IX(')l < 1 



Structure and simulation of slender vortex $laments 283 

they reproduce, in a natural fashion, Crow’s linear stability theory for infinitesimal 
perturbations of the vortex pair (Crow 1970). 

When the far-field flow surrounding the filament from (2.7) is at rest, the filament 
motion obeys (2.6) with u given by a linearized expression for the finite part of the line 
Biot-Savart integral. Using the curve representation in (2.7) one finds 

u = I[X@)] x to. 

The linear non-local operator I[.], which acts on the scaled spatial variable 
pseudo-differential operator 

fa  1 

I[w] (g) = - [w( cr + h) - W( cr) - IZW’((T + h) + $h2H( 1 - lhl) w”(v)] dh, J-, i i 3  

whose effect is best understood by considering its Fourier symbol 

@J = e-itg~[eiig] = - ~ 2 ( $  In ~2 - co), 

(2.9) 

cr, is a 

(2.10) 

(2.11) 

with co = t - y  z -0.0772 and y being Euler’s constant. In (2.10) H ( - )  denotes the 
Heaviside step function and primes denote differentiation with respect to cr. Detailed 
discussions of the operator and of its mathematical character are given by Klein & 
Majda (1991 a, b). 

These authors also show that Hasimoto’s transform (Hasimoto 1972) turns (2.6) 
with u from (2.9) into the perturbed nonlinear-non-local Schrodinger equation 

(1 /i) Y, = Y3* + 2($1 Y 12 Y- I[ Y]) (2.12) 

for the complex filament function 

Y ( ~ , T )  = K ( ~ , T )  eiJ[eTldB. (2.13) 

Here K, and T respectively denote the curvature and torsion of the filament reference 
line, while 3 = s”/e, where s“ is an arclength coordinate scaled with the characteristic 
radius of curvature, R, and satisfies s“ = s( 1 + O(e2)). 

Hasimoto analysed the local induction approximation for vortex filament dynamics, 
i.e. he considered (2.6) with u = 0 (and a suitably rescaled time variable f = t /e2) .  For 
three-dimensional filament geometries characterized by a single radius-of-curvature 
lengthscale, R, Hasimoto found the cubic nonlinear Schrodinger equation for the 
filament function, which corresponds to (2.12) with the I[ .]-operator removed and with 
e = 1. The surprising observation from (2.12) is that for perturbed curves as in (2.7) the 
relevant filament evolution equation is a perturbation to the linear Schrodinger 
equation, where nonlinear and non-local effects directly compete in the perturbation 
term : 

e2(;lYy12 Y-I[Y]).  (2.14) 

Thus, for perturbations of the filament geometry in the Klein-Majda regime, non-local 
contributions become as important as the nonlinear local induction effects. Also the 
non-local term - e21[ Y ]  is responsible for filament self-stretching. Thus, in the present 
regime of short-wavelength perturbations of a straight slender vortex, there is a direct 
competition at the same perturbation order in E between nonlinear effects and the non- 
local self-action capable of self-stretching. The mathematical features of (2.12) are 
discussed in detail by Klein & Majda (1991 b) and it is shown that the term -e21[Y] is 
a highly singular perturbation of the linear Schrodinger equation - (2.12) with e2 = 0. 
Numerical solutions of (2.12) demonstrate the effect of this singular perturbation when 
it interacts with the cubic nonlinearity. The computations reveal that there is a 
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nonlinear energy transfer in wavenumber space from long to short wavelengths due to 
this nonlinear-non-local interaction. 

In 9 5,  we compare predictions of the Klein-Majda theory with numerical simulations 
of slender vortex dynamics using the standard and improved thin-tube vortex element 
schemes from 94. These computations serve as stringent mutual tests for these two 
fundamentally different approaches and a successful comparison will lend strong 
support to both. In particular, we will consider cases with e as large as i, which 
corresponds to realistic ratios of the vortex core size and a characteristic filament radius 
of curvature, 6 M 0.02, following Crow (1970). This is also the range of values chosen 
in Klein & Majda (1 99 1 b, 1993) and Klein et al. (1 992) for computational convenience. 

3. Derivation of the filament equation of motion and asymptotic solution 
of the vorticity transport equation 

As mentioned in the introduction, the analysis starts with an asymptotic evaluation 
of the three-dimensional Biot-Savart integral from (1.5) for points X = X, = X(s",, t )  
on any of the curves L'(t) in the inner O(S2) core of the vortex. For convenience, we 
discard the time dependence in the notation for the rest of this section, as time only 
enters as a parameter in the Biot-Savart integral. We adopt the time-dependent 
filament-attached coordinates ( r ,  8, i )  which are explained in figure 2. The arclength s" 
is used as the curve parameter and we define a circumferential angle in planes normal 
to the filament reference curve following Ting (1971) as 

0 = v+B0 where 0, = rT(i)dS. (3.1) 
J o  

Notice that 0, is precisely the torsion integral that appeared in the definition of the 
filament function in (2.13). This choice will be convenient in later calculations (see e.g. 
(3.5) below). 

We split the integration over R3 into a local and a non-local contribution according 
to 

F(x, X,) d3x + JBl F(x, X,) d3x). 

Here F(x, X,) abbreviates the integrand from (1.5) and B, is a ball of radius 6, around 
the point of reference X, as sketched in figure 3. This radius 6, is small compared to 
the geometric scales of the filament, while it is large compared to the vortex core size. 
Since we have normalized lengths with respect to a characteristic filament radius of 
curvature, 6, should satisfy the limiting constraints 1 % 6, % 6. In fact, below we will 
need the somewhat more stringent restrictions 

1 % 6, 9 all2. (3.3) 

In the following we evaluate the two integrals in (3.2) separately, using asymptotic 
methods. 

The inner integral 
Within the ball B, all geometrical variations of the filament reference line are weak 

and they may be represented asymptotically by Taylor series expansions. Using the 
stretched radial and axial coordinates 

F =  r / 6  and z = (1/6)(s"-il), (3.4) 
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FIGURE 3. Local-non-local decomposition of the domain of integration for the asymptotic 
evaluation of the Biot-Savart integral. 

one obtains 

x - X ,  = S(zt, + re,, ,) + 62(iz2(~b) ,  - FZ cos ( q ) ( K r ) , )  + O(t13), (3.5) 

where subscript 1 denotes evaluation at s” = S;, the arclength coordinate of X,. To 
obtain (3.5) we have used the identity ae,/as” = -cos (q)(~t) for the arclength derivative 
of the radial unit vector e,. (The derivation uses the representation e, = cos (q) n + 
sin(q)b, the Serret-Frenet formulae (see Hasimoto 1972 or Klein & Majda 1991a) 
and, importantly, that alas“ denotes a derivative at fixed ( r ,  O), but not at fixed ( r ,q) . )  
The vorticity is also expanded for small s”-& as 

o = (1 /S2) (T,I$O) eo, , + cy) t,) 

+(I/&) ( < ~ ) e , , , + ~ y ) e o , , + c ~ )  t , + z ~ ( B ( ~ ’ e , + e ( ~ ’ ~ ) , )  a 

+O(l). (3.6) 

(3.7) 

For the present calculations we adopt the usual assumption that the leading-order 

(3.8) 

whereas [y), 7:) and c?) do depend on the circumferential coordinate 0. Inserting the 
expansions (3 .5 t (3 .7 )  into the second integral in (3.2), we find the first two terms of 
the induced velocity at X, to be 

and 

Finally, the transformation to filament-attached coordinates induces the relation 

d3x ++ 6’31 - ~ F K  cos (q)) drdO ds“ 

for the space volume increment. 

vorticities be axisymmetric, so that 

T, I (O)  = T , I ( O ’ ( r ,  ?, t), p) = <(”(r, 5, t), 

ugne ,  = wy) t ,  + O((6/s,)2) (3.9) 

ul:ner = t lW1)) ,  Lo 

+0(1) as 6,/6+co. (3.10) 
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Here the leading-order axial velocity, evaluated on the filament reference line, 
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co 
W$ = 1 7y)dq 

0 

(3.1 1) 

has been introduced; similarly, the circumferential average of the first-order axial 
velocity on the reference line (wf))  is given by 

where 

(3.12) 

(3.13) 

Furthermore, g:) and Gi) are Fourier components with respect to 6 of the first-order 
vorticity, defined by 

G) + i[$ = 1; Q')(r, 6, f1, t )  eis d6. (3.14) 

Only the induced velocity components in planes normal to the filament reference line 
are of relevance for its geometrical evolution and, anticipating that ci = 0 from the 
asymptotic solution of the vorticity transport equation below, we obtain for these 
components 

+0(1) as 6,/6+co. (3.15) 

To arrive at this result, we have explicitly carried out the integrations over z in (3.10) 
and neglected terms of 0((~Y/6,)~)  and smaller. 

An important fact from (3.15) is the linear influence of the leading- and first-order 
vorticities on the induced velocity. This may have been expected, as the fundamental 
velocity-vorticity relation via the Biot-Savart integral is linear. On the other hand, this 
result at a first glance seems to contradict earlier theoretical considerations, e.g. by 
Callegari & Ting (1978), which predicted a nonlinear influence of the leading-order 
vortex core structure on the filament motion. We resolve this discrepancy later in this 
section by an asymptotic solution of the vorticity transport equation inside the vortex 
core which exhibits a nonlinear dependence of gt) and [$i) on 7(O) and Po) .  
The outer integration 

have 

and the asymptotic expansion of the integral yields 

Here we consider the first integral from (3.2), where Ix-XJ 2 6,. In this regime we 

(3.16) x - X I  = ( X ( 3  - X(S;)) + &ee,(6, i) 

where IB denotes the interval 5-6, < s" < i + S B .  Using the asymptotic representation 
of the vorticity in (3.6) and taking into account that the leading-order vorticities are 
axisymmetric, the double integral in (3.17) at the leading-order evaluates to rt(.f) where 
r is the total circulation of the vortex and t is the local unit tangent to L'(t). In this 
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fashion we obtain the standard line Biot-Savart integral with the arbitrary matching 
length 8, as a cut-off 

(3.18) 

This expression is logarithmically singular as 8, vanishes and we extract the structure 
of this singular behaviour by analysing the immediate vicinity of the reference point. 
In this region, one may expand the integrand from (3.18) as 

(3.19a) 

where the local representation of the integrand is 

Recalling that only the normal components of the induced velocity are relevant for the 
geometrical evolution of the filament geometry, we may now write 

where QiL = Qi(1 - t o  t )  is the component normal to t of the non-local finite part of 
the Biot-Savart integral Qi which is defined by 

Here H(s) is the Heaviside step function and p is a length comparable with the 
characteristic length of the filament geometry. Notice that the choice of p has 
absolutely no influence on the result of (3.20). It may conveniently be set to unity, 
which would produce a slight simplification of the formulae. However, for the 
Klein-Majda regime discussed above the appropriate choice is p = E and it is in fact 
this choice which, in a straightforward manner, leads to the definition of the I-operator 
in (2.10), (2.1 1). Collecting the contributions from the inner and outer integration of 
(3.15), (3.20) and (3.21) we obtain 

where 

(3.22) 

(3.23) 

This is the formulation for the filament velocity announced in (2.6), (2.9) when we 
let p = 6 and u = Q;L. However, to complete the derivation of the induced velocity at 
points on L’(t) in terms of the filament geometry and of the leading-order vortex core 
structure, we need to eliminate [ii). This is done in the subsequent calculation where 
we analyse the asymptotic solution of the vorticity transport equation in the vortex 
core region. 

We observe here that the formulae in (3.22) and (3.23) are valid for any curve L’(t) 
located in the inner O(P) core of the vortex, since in the attached frames of all of these 
curves one finds the same axisymmetric leading-order vorticity distribution. The only 
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difference between the induced velocities on two such curves stems from differences in 
L$). In the subsequent asymptotic analysis of the vorticity transport equation inside 
the vortex core, we compute the very distribution of gi) valid for L' = Lst(t), i.e. for the 
connecting line of stagnation points in the moving frame of reference. By inserting 
the result in (3.23) we obtain the desired value of the core coefficient that determines the 
filament motion. 

Asymptotic solution of the vorticity transport equation 

For the computations of this section it is convenient to split the local flow velocity 
into the sum of the relative velocity in the filament attached frame of reference plus 
the velocity of the filament reference line. We let 

v = X,+ V, (3.24) 

where V has the asymptotic representation 

1 
6 

V = - (d0)eg + wco)t) + (u(l)e, + v(l)eg + w(l)t) + O(6). (3.25) 

Here V has axisymmetric leading-order components do)  and w(O), while the first-order 
contributions u(l), v(l) and w(l) depend non-trivially on the circumferential coordinate 
8. Insertion of (3.6) and (3.25) into the vorticity transport equation in (1.4) first shows 
that the leading two terms in 6 express a balance of vorticity advection and vortex 
stretching. Thus, 

( V . V ) 0  = (0.V) V.(l+0(62)). (3.26) 

To arrive at this result it is crucial to assume a quasi-steady solution for the core 
structure, i.e. no changes on timescales shorter than tref = 47rR2/I'. Then the time 
derivative terms are small and enter at higher order only. Using the stretched radial 
coordinate ?from (3.4), the gradient operator in terms of filament attached coordinates 
reads 

(3.27) 

and (3.6), (3.25) and (3.27) inserted in (3.26) readily yield the leading- and first-order 
vorticity transport equations valid in the vortex core region. It turns out that the 
leading-order equations are trivially solved for any arbitrary axisymmetric leading- 
order core structure. At the first order, we are interested only in the equation for the 
axial vorticity component Ql). We thus consider the axial component of the vorticity 
transport equation, eliminate <(l) by using the identity 

C(l) = (l/$ wp) + K sin (v) w(O), (3.28) 

which can be derived from the definition of the vorticity as the curl of velocity, and find 

v(O)[r) +  up) c) + FK sin (v) (c(O)v(O) - 2~(0)7(0)) = 0. (3.29) 

Multiplication by eis and integration immediately yields 

(3.30) 

if one takes into account that y(O) = wp). 
By introducing a suitable streamfunction for the first-order flow in planes normal to 

the filament reference line, one can show that (3.29) is equivalent to the streamfunction 
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equation (4.18) of Callegari & Ting (1978) or (4.21) of Klein & Majda (1991a), for 
which explicit solutions in terms of the leading-order core structure are available. As 
explained earlier in this section and in the introduction, we seek the induced velocity 
at the local stagnation point in the filament-attached frame of reference, so that we 
must require that u(l)  and v(l) both vanish at r=  0. Although we have used a totally 
different argument than that employed in the references cited, we arrive at the same 
inner boundary conditions for the streamfunction equation and may therefore directly 
use the solutions for the first-order flow which are given in these studies. Thus, we find 

(3.31) 

where v(0)fp) = 2jrv(0)p) + v ( o ) 2  + 2jzw(0) wp). (3.32) 

By combining (3.23) with (3.30)-(3.32) we obtain the desired expression for the core 
structure coefficient, namely 

(3.33) 

This completes the new derivation of the equation of motion of a slender vortex 
filament. 

4. Thin-tube vortex element schemes 
4.1. The standard thin-tube model 

Construction of the three-dimensional vortex filament model starts with the 
discretization of the slender vortex into a finite number of vortex elements. Each 
element is specified in terms of the circulation r of the filament and two Lagrangian 
variables which describe the endpoints of a material segment that is located close to the 
centre of the vortex. The Lagrangian variables are denoted xi, i = 1, . . . , N ,  where N is 
the total number of vortex elements. The latter are ordered so that the indices increase 
in the direction of the vorticity vector. Thus, the collection defines a directed 
graph which constitutes a discrete approximation to the filament geometry. We will call 
the 

Based on the node locations, a smooth numerical approximation of the filament 
vorticity is defined using the expression (Beale & Majda 1985, 1982a, b ;  Greengard 
1986) : 

uortex element nodes, or simply nodes, from here on. 

N 

4 x ,  t )  = c rsx,(t)fs(x -xxt)) ,  (4.1) 
i=l 

where I‘ is the circulation of the filament, and 

respectively denote the length and centre of the ith vortex element. In (4.l),fs represents 
a rapidly decreasing spherical core smoothing function of unit mass which obeys the 
relationship 
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Importantly, in the standard thin-tube approach it is implicitly assumed that the 
numerical core size parameter Prn coincides with the physical characteristic vortex core 
diameter 6, which is why we are not making any distinction of notation in this summary 
of the standard scheme. See, however, the third correction method for the model 
described below, where we do introduce an explicit choice of Prn that differs from the 
physical quantity 6. 

Following Beale & Majda (1985), the smoothing function is required to satisfy 
certain moment constraints which ensure that the velocity induced by a vortex element 
is non-singular but asymptotically approaches that of a concentrated vortex for 
distances larger than the core radius 6, which directly corresponds to the characteristic 
physical vortex core size introduced in the preceding section. The discretization of the 
filament geometry further obeys the requirement of overlapping cores, a condition that 
is widely assumed in the vortex element convergence studies cited above. In particular, 
the maximum separation between neighbouring elements should be smaller than the 
core size, i.e. max{16xi(t)l}El < 6. 

This construction, which resembles those used by Chorin (1980) and Knio & 
Ghoniem (1990) enables us to follow vortex element methodologies. Thus, the velocity 
field may be simply reconstructed by inserting (4.1) into (1.5). The result is the 
following desingularized Biot-Savart law : 

where 

is the velocity smoothing kernel corresponding to fs. 
When coupled with this desingularized velocity field representation, the adopted 

Lagrangian representation of the vortex elements allows straightforward discrete 
approximation of solutions of the governing equations. We first recall that the vortex 
elements are represented by Lagrangian nodes, whose motion obeys 

(4.7) 
Next, we invoke the theorems of Kelvin and Helmholtz to conclude that the circulation 
of the filament remains constant, while the filament vorticity changes according to local 
stretching and tilting of its reference line. Since the latter is described by the Lagrangian 
locations of the elements, stretching and tilting effects are implicitly accounted for in 
the vorticity representation in (4.1E(4.3). Thus, the vorticity transport equation is 
implicitly accounted for and an explicit evaluation of velocity gradients is avoided. In 
the present computations, a second-order predictor-corrector scheme is used to 
integrate the system in (4.7). The present implementation of the thin-tube model 
incorporates a mesh refinement scheme analogous to that used by Knio & Ghoniem 
(1990). Remeshing occurs when the length of a single element excedes a pre-chosen 
threshold. A single element is divided into two by inserting a new Lagrangian variable 
at the midpoint of the associated segment whenever 6x > 0.46. Thus, the redistribution 
scheme ensures that a sufficient core overlap among neighbouring elements is always 
maintained. The incorporation of such a redistribution scheme has been shown by 
Ghoniem, Heidarinejad & Krishnan (1988) and by Knio & Ghoniem (1990, 1991) to 
guard against potential deterioration of the accuracy of the discretization due to severe 
deformation of the Lagrangian mesh by prevailing strain. 

Further distinctive features of the present thin-tube model computations are a 

d;li(t)/dt = ui = dtm(Xi(t), t). 
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spectral representation of the filament geometry, an associated nonlinear filtering in 
Fourier space and the treatment of periodic boundary conditions. We defer the 
detailed explanation of these techniques to $6.2 and Appendix A. 

4.2. Asymptotic corrections of the thin-tube model 
The fundamental idea underlying the thin-tube model is to move the vortex element 
nodes with velocities based on an exact evaluation of the Biot-Savart integral for an 
approximate numerical vorticity distribution. Through a suitable choice of the 
numerical core smoothing function f s ( r )  and by identifying the numerical core size 
parameter 6, a wide range of vorticity distributions can be represented by the numerical 
approximation. It is then assumed that the induced velocity at the nodes is a good 
approximation to the local filament velocity. This assumption turns out to be wrong 
and this can be seen through the following argument. 

In the thin-tube model, the numerical vorticity distribution has filament structure, so 
that the asymptotic analysis of the Biot-Savart integral from $ 3 may directly be applied 
to obtain an analytical representation of the numerical induced velocity for sufficiently 
small S. Let (y'", Gt)) and ( { ( ' ) v t t r n ,  Ci~).""") be the physical and numerical vorticity 
components needed in the velocity formulae (3.22), (3.23), respectively. Assume further 
that, at a given time, the vortex element nodes lie in the inner O(S2) core of the 
filament. Then, according to (3.21), the non-local parts of the induced velocities Qi 
coincide. However, a difference exists between the node velocity in the thin-tube model 
and the correct filament velocity owing to differences in the physical and the numerical 
core coefficients, C and Cttrn, computed from (3.23). Hence an error of order unity in 
the predicted numerical node velocity occurs. 

means of an asymptotic analysis of the numerical vorticity structure. Until then, we 
assume these functions to be given explicitly and concentrate on how to modify the 
thin-tube model in order to remove possible O( 1) deviations between the numerical and 
the asymptotically correct filament velocity predictions. 

We discuss three independent correction strategies. The first is based on adding an 
explicit correction velocity to the numerical node velocity from the standard method. 
The second relies on an exact evaluation of the three-dimensional Biot-Savart integral, 
but at corrected locations that are displaced from the vortex element nodes by an O(S2) 
shift. In the third correction method, we no longer identify the numerical core radius, 
Prn, with the filament core size, 8;  instead, Prn is appropriately rescaled so as to 
produce the correct local induction effects. 

I .  Explicit correction velocities 
Assume that the leading-order axisymmetric core structure of a vortex is given and 

that explicit representations of the vorticity components e2*ttrn have been 
derived based on the numerical approximate vorticity distribution through a suitable 
asymptotic analysis. Then, in order to move the vortex element nodes with a velocity 
correct to O(S), we use the asymptotic representation of the induced velocity from 
(3.22) and let 

In the next subsection, we will derive suitable expressions for y'O),ttrn, Gt)sttrn b Y 

r 
u","& = V n o d e + - ( K b )  4.n [C-Ctt"], (4-8) 

where Cis the core structure coefficient from (3.23) evaluated with the physical vorticity 
components P),g?, while Cttm is its analogue based on the numerical vorticity 
distribution, i.e. evaluated using g>,ttrn. 
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II. Evaluation of the Biot-Savart integral at corrected locations 
It has been emphasized earlier that the desired filament velocity equals the induced 

velocity on the connecting line of stagnations points in the inner 0(6')-core of the 
filament, except for an axial velocity component that is irrelevant for the geometrical 
evolution of the vortex reference line. If we are able to compute a node-to-stagnation- 
point displacement in the normal planes of the vortex, then in order to obtain the 
correct motion of a vortex element node we just have to: (i) evaluate the Biot-Savart 
integral for the stagnation point closest to the node and (ii) propagate the node with 
this induced velocity. 

Below, this node-to-stagnation-point displacement is determined based on the 
physical and numerical vorticity components Po), <:) and < ( 0 ) y t t m ,  ci),ttm. The key 
observation is that the nodes and stagnation points are displaced from each other by 
a distance of O(6'). Since the characteristic transverse scale of the vorticity and velocity 
distributions is much larger, namely of 0(6),  a Taylor series expansion may be used to 
express the induced velocity at a stagnation point, given the velocity at a node: 

Here we have anticipated a result of the next subsection, which says that the desired 
displacement is along the principal normal of the filament reference line. We now 
compute the scaled distance z. 

Using the asymptotic representation of the induced velocity at points in the inner 
O(6') core of the vortex from (3.22), (3.23) and the gradient operator (3.27) we find 

(4.10) 62n. (vv)r=o = izc;' b. 1 O),ttm 

We combine (4.9), (4.10) with (4.8) to obtain 

(4.1 1) 

In summary, the idea for the second approach to correcting the thin-tube vortex 
element model is to 

(i) compute the node-to-stagnation-point distance z from (4.1 1) using (3.23) and the 
explicit representations of 

(ii) evaluate the Biot-Savart integral based on the numerical vorticity distribution 
for the stagnation points 

c:)*ttm to be derived in the next subsection, 

Xstagn = Xnode + 62zn, (4.12) 

to obtain the induced velocity vstagn, and 
(iii) integrate d;li/dt = vstag(Xi). 

III. Rescaled numerical core radius 
The third and, from a practical point of view, simplest and most efficient asymptotic 

correction is a suitable rescaling of the numerical core radius Pm. Following the 
arguments in $43 and 4.3, the numerical induced velocity at the nodes has the 
asymptotic representation 

(4.13) 
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which is formally analogous to the asymptotic formula for the physical filament 
velocity (3.22). For the third correction, we allow deviations from the original 
assumption of the thin-tube model that the numerical core radius matches the physical 
one. Thus, we apply the standard thin-tube model using a rescaled numerical core 
radius, chosen so as to satisfy 

ln-+Cttm 2 = In-+C, 2 
CYtm S 

(4.14) 

or equivalently, CYtm = Sexp (Cttm - C). (4.15) 

This rescaling guarantees that the asymptotic representations of the numerical and 
physical filament velocities coincide except for local errors of O(S) as S+ 0. As pointed 
out earlier, the non-local contributions match except for very small numerical 
discretization errors. 

This third corrected thin-tube model is easy to implement since it does not involve 
the computational of higher-order arclength derivatives of the filament geometry, 
which is necessary in the first and second correction methods. However, we caution 
that a successful application of this method including qualitative and quantitative 
comparison between theoretical and numerical predictions requires a very careful 
distinction of the numerical and physical core size parameters. 

4.3. Asymptotic structure of the numerical vorticity distribution 
The numerical vorticity distribution from (4.1k(4.4) approximates the following 
smooth superposition of spherical blobs of vorticity : 

(4.16) 

where Lttm(t) is a smooth curve connecting the vortex element nodes. When the 
vorticity distribution from (4.16) has filament structure, i.e. when S/R < 1,  with R 
being a typical filament radius of curvature, then an asymptotic evaluation of (4.16) 
similar to the computation of the Biot-Savart integral in 92 is possible. 

In analogy to the inner-outer decomposition of the Biot-Savart integral in (3.2), we 
rewrite (4.16) as 

(4.17) 

where 1, is the same interval as introduced in (3.17). The numerical vorticity smoothing 
function fs(r) is rapidly decaying for r / 6  % 1, so that the contribution from the first 
integral in (4.17) is exponentially small as S,/S+ 00. For the second integral, the curve 
geometry may be expanded as in (3.5). By this approach we have 

Z2 

2 
X- Xttm(r?, t )  = S(Fere,, + zt,) + 6' - (m), + . . . , 

(4.18) 

t(S, t )  = t ,  + 6z(Kn), + . . . , 
where the stretched coordinates F and z from (3.4) have been employed. Subscript 1 
denotes evaluation at r?,, which is the arclength coordinate of the point Xym on the 
numerical filament reference line Lttm(t) that is closest to the point of reference X .  
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Using the expansion from (4.18) and the explicit representation of &(r) in (4.4) one 
finds 

(4.20) 

(4.19) 

where R = (P + z2)l/', 

and a prime denotes differentiation. Inserting this expansion in (4.16) and integrating 
with respect to z, we find the following asymptotic representation of the thin-tube 
vorticity distribution : 

1 [ R 
FZ2 

&(1X--Xttm(i, t)l)t(i,  t )  = f l R ) t l + 8 ~  zflR)n,+~cosp,--f'(R)t, +0(s2), 

and 

J -m 

(4.22) 

(4.23) 

These are the desired numerical vorticity components that enter the formulae for the 
induced velocity at the vortex element nodes from (3.22) and (3.23) as explained in 
$4.2. Given a suitable numerical vortex core smoothing function, the formulae in 
(4.22), (4.23) can be evaluated and the numerical core structure coefficient Cttm, needed 
for the improved thin-tube models of $3.2, can be computed from (3.23). We notice 
that the leading-order distribution QO), t t"(CJ is constant in time and does not vary along 
the filament curve. It is determined completely by the core smoothing function. The 
numerical first-order vorticity component G;l'l,ttm is proportional to the filament 
curvature just as the corresponding physical component ci;) from (3.30k(3.32). Notice, 
however, that their radial distributions are totally different. While that of sl':~""" is 
again determined completely as a linear functional of the numerical core smoothing 
function, c? has been obtained from the asymptotic solution of the vorticity transport 
equation and it depends nonlinearly on the physical leading-order vorticity. 

4.4. A spectral variant of the thin-tube model 
Numerical implementation of the corrected thin-tube models discussed in $4.2 above 
require, in particular, that the local curvature of the filament reference line be estimated 
during the computations, as well as its local tangent, normal and binormal vectors. 
However, numerical estimates of the desired quantities may not be simple to obtain in 
conjunction with the standard straight-segment-type reference line approximation 
described above. Furthermore, a careful numerical implementation must avoid 
compounding the stiffness of the equations with numerical accuracy problems 
associated with multiple differentiation of Lagrangian data. 

In order to overcome these problems while at the same time obtaining accurate 
estimates of the desired derivative quantities, an improved variant of the thin-tube 
model is constructed. Briefly, this variant takes advantage of the periodic nature of the 
targeted perturbations by using the initial parametrization variable s as Lagrangian 
variable. This allows a 'spectral' interpolation of the filament geometry, which is 
incorporated in the present variant of the thin-tube model by processing the 
Lagrangian nodal locations with a discrete fast Fourier transform (FFT) routine. The 
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resulting Fourier coefficients are then used to estimate the first and second spectral 
(collocation) derivatives of the Lagrangian nodal coordinates with respect to s, r;(t)  E 
dx(s, t) /as Is$ and rr(t) = azx(s, t) /as2 Is. .  Once r’ and r” are computed, the tangent, 
normal, binormal and curvature or the filament reference line are respectively 
evaluated using 

t = r’ / (r’ .  r’)1/2,  (4.24) 

and 

(4.25) 

b = t x n  (4.26) 

[(r” . r”) (r’ . r’) - (r’ . r”)2]l/z 
(r’ . y’)3/2 

K =  (4.27) 

It should be mentioned, however, that since the components of the Lagrangian nodal 
locations are no periodic ‘ signals ’, spectral processing of the corresponding data 
should be carefully performed. This difficulty is overcome by first noting that for a 
filament that is L-periodic along the x-direction, the y- and z-components of the nodal 
locations are naturally L-periodic and may therefore be directly Fourier transformed. 
For the non-periodic x-component, we first form the L-periodic difference between 
current and initial values, and then take the Fourier transform of this difference. Since 
derivatives of the initial locations are known exactly, spectrally accurate derivatives of 
the non-periodic components can be easily deduced. 

We also take advantage of the spectral decomposition of the reference line geometry 
in deriving a more accurate line Biot-Savart quadrature. To this end, we first modify 
the Lagrangian particle representation of the vorticity field and replace (4. I )  by 

(4.28) 

Meanwhile, the length of vortex elements is approximated using the spectral collocation 
derivative of the filament reference line, i.e. through 

8xi(t) = r;(t>As. (4.29) 

Accordingly, the desingularized line Biot-Savart integral is re-expressed as 

(4.30) 

Thus, in this version of the numerical scheme, all derivatives are approximated by their 
corresponding spectral collocation derivatives. The remaining features of the 
algorithm, which deal primarily with Lagrangian tracking of the elements, are 
unaffected. As discussed below, the present modifications result in an improvement in 
an accuracy of the computations, without any appreciable increase in the com- 
putational overhead. 

5. Slender vortices in the Klein-Majda regime 
In this section we compare predictions for the evolution of slender vortex filaments 

obtained by the Klein & Majda (1991a) asymptotics with those generated by the thin- 
tube vortex element models of Knio & Ghoniem (1990) and of $4 of this paper. Vortex 
filaments in the Klein-Majda regime are particularly suited for a test of the thin-tube 
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models, because on the relevant timescales the vortex core structure is frozen. This fits 
in with the fact that the thin-tube models assume, in their current version, a time- 
independent numerical vorticity smoothing function. (As shown in $4, the cor- 
responding leading-order structure also turns out to be frozen.) All the numerical 
predictions of this section have been generated with the spectral version of the thin- 
tube code as described in $4.4 and with N = 1024 nodes. In $6 we address several 
numerical issues and show, in particular, that the results obtained using the spectral 
representation of the filament geometry are in fact converged. 

To explain what may be expected from this comparison, we first recall that the 
correct expression (3.22) for the filament velocity may be separated into the local 
binormal term and the non-local finite part of the Biot-Savart integral. Then we notice 
the following. 

(I) The Klein-Majda (K & M) asymptotics 
+ approximates the local contribution asymptotically accurate with errors of 

0(6), while it 
- approximates the non-local term by the linearization from (2.9), (2.10) which 

involves errors of O(s) as 8+ 0, where s is comparable to l/ln (I/&) according 
to the definition in (1.12). 

On the other hand, we observe that 
(11) the standard thin-tube model 

- mis-predicts the local contribution with errors of 0(1), while it 
+ provides highly accurate predictions for the non-local part. 

Through our efforts described in $52-4 we have removed the gross local error of the 
thin-tube model. In fact, with either of the proposed corrections the numerical method 
inherits the accuracy of the asymptotic analysis as regards the local binormal term. In 
this sense, we have used the systematic asymptotic analysis in order to fine-tune the 
numerical model. As a consequence, we observe that 

(111) the corrected thin-tube models from $4 
+ approximate the local contribution asymptotically accurate with errors of 

+ provide highly accurate predictions for the non-local part. 
0(6), while they 

Following statements (I)-(111) above, we conclude that comparison of the K & M  
asymptotic predictions with the standard and improved thin-tube numerical schemes 
will (i) quantify the large local errors of the original thin-tube model and (ii) exhibit the 
errors involved in the K & M-type linearization of the finite part of the Biot-Savart 
integral. We emphasize that the computations of this section will all be performed with 
normalized circulation r = 47c and for an expansion parameter s2 = 0.25. This value of 
6 was used in most of the numerical solutions of the asymptotic filament equation 
(2.12) in the studies by Klein & Majda (1991b, 1993) and Klein et al. (1992). The 
favourable comparison with the improved thin-tube model will demonstrate that the 
asymptotics provide useful insight into the filament dynamics at quite realistic values 
of the core size parameter 6 M 0.014.02. 

Section 5.1 provides some important details regarding how the comparisons in the 
subsequent sections are built. Mutual tests of numerical and asymptotic predictions of 
propagation velocity based on a fixed filament geometry are discussed in $5.2. These 
static tests use a plane sinusoidal distortion of slender vortices in the K & M regime. In 
$5.3, we consider the temporal evolution of vortex filaments starting from the plane 
curve initial geometries from $5.2. 
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5.1. The basis for  comparisons 
Going back to the asymptotic predictions of the filament velocity in (3.22) (and 
recalling that the specific value of the integral matching parameter p is irrelevant) we 
conclude that the scalar quantity 

ln(l/6)+C 

characterizes completely the influence of vortex core size and vortex core structure on 
the filament motion. In all of the comparisons between asymptotic and numerical 
predictions which are presented in this section, we will assume that there is a fixed 
physical reference vortex structure, so that 

(5.1) 

This is equivalent to fixing the K & M  expansion parameter E ;  we choose e2 = 0.25 
throughout this section. Given a typical value for the core coefficient of C = -0.558, 
relevant for a Gaussian axial vorticity distribution and zero axial flow, this choice of 
E corresponds to 6 x 0.01. This is quite a realistic value comparable, for example, to the 
core size to wing span ratio for the trailing vortices of a mid-size airplane according to 
Vitting (1991). 

We intend to compare asymptotic predictions with results from the thin-tube vortex 
element models. In particular, we wish to test the influence of the numerical vorticity 
smoothing function on the results. We have shown in 94 that any choice of a smoothing 
function directly corresponds to a (frozen) leading-order axisymmetric (numerical) 
vortex core structure. Now we are interested in how accurately a thin-tube model with 
a given smoothing function simulates the evolution of a physical vortex that has the 
same structure at leading order. Specifically, we want to compare the numerical results 
with those corresponding to the physical reference vortex introduced above. As a 
consequence, we have to introduce a relation between numerical core size and the 
vorticity smoothing function; we let 

ln(l/6)+C = l/e2-ln(2e) = const. 

where the subscripts indicate the choice of the third-order Gaussian or the sech2 
smoothing functions 

3 3 
fTr) = -e-y3 47c and f ( r )  = -sech2 47c (r3), (5.3) 

respectively (see Beale & Majda 1985). The core coefficients C, = -0.3212 and C, = 

- 0.2201 are obtained by evaluating the quadratically nonlinear functional from 
(3.33) assuming zero axial flow, i.e. do) = 0, and using the circumferential velocity 
corresponding to the numerical core structure from (4.22), (4.23). (Notice that the 
leading-order axial vorticity and circumferential velocity are related via <(') = (FV(~)),.) 

We emphasize that the choice of the numerical core size from (5.2) is the physically 
correct one. With this choice, the leading-order vorticity distributions and core sizes of 
the physical reference vortex and its numerical counterpart coincide. 

5.2. Static tests 
The analytical considerations given in g2-4 are of static nature. They involve 
asymptotic evaluations of spatial integrals and an asymptotic solution of the leading- 
and first-order vorticity transport equations, which do not include unsteady terms. 
Hence, given a fixed filament geometry, it is only natural to compare filament velocity 
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FIGURE 4. Filament velocity predictions for the sinusoidal plane curve geometry 
from (5.4) with e2 x 0.25 and ri = 0.025. 

predictions from the several different approaches of g2-4. Such a static comparison 
has the advantage that errors induced by a specific temporal discretization cannot skew 
the results. 

Here we analyse plane curve sinusoidal geometries described by 

X(s) = st, + e2a" sin (2s/e) no, (5.4) 

where the amplitude a" is to be varied and to and no are mutually orthogonal unit 
vectors. Equation (5.4) describes a filament whose reference line lies in the (to, no)- 
plane. A straightforward symmetry consideration shows that the filament velocity 
points along the direction of b, = to x no, i.e. it is everywhere normal to the (to, no)- 
plane. Thus, it is sufficient to display only one scalar quantity in the following 
comparison: the filament velocity in the direction of b,. The theoretical prediction for 
this velocity component from (2.6), (2.9) is 

where a = s/e and f( .) is the Fourier-symbol of the I-operator in (2. lo), (2.11). This 
prediction will be compared below with the output from the standard and improved 
thin-tube models of $4. 

Improvement of the thin-tube model 
Here we demonstrate the quantitative improvement that is achieved by the local 

corrections to the standard thin-tube model discussed in 94. Figures 4 and 5 show 
results for the plane curve geometry from (5.4) with a" = 0.1. Figure 4 includes filament 
velocity predictions from the local induction approximation (LIA) (see Batchelor 1967 
or Hasimoto 1972), the Klein & Majda (1991 a, b) asymptotics and the spectral version 
of the standard thin-tube model described in 94. We observe a 25-30% deviation 
between the local induction approximation and the asymptotic prediction. This 
underscores the conclusion by Klein & Majda (1991a) that in the present regime of 
perturbed slender vortices, the local induction approximation does not provide a valid 
description of the filament dynamics. Between the K & M theory and the standard thin- 
tube model we still find deviations of about 7 % in the present case. For the small value 
of a" = 0.1 considered, these differences are dominated by the erroneous prediction of 
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FIGURE 5. Deviations between the theoretical and numerical filament velocity predictions for the 
configuration of figure 4. (a)  Comparison of the K&M theory to the standard and improved thin- 
tube models, (b) comparison of the K & M  theory to the improved thin-tube scheme on an 
appropriate scale. 

local effects in the numerical method. We infer this from figure 5(a) which shows the 
differences between K & M and the standard thin-tube scheme (solid line) and between 
the K & M theory and one of the corrected thin-tube models of $3 (dashed line). We 
find that the local correction effectively removes the discrepancy between the 
asymptotic and numerical predictions. In fact, the scaled velocity difference 
IvK&M-vttm[/K varies about its average of 0.199 by no more than 2%, so that a local 
correction proportional to the curvature K yields the desired result. Which particular 
version of the corrections in $4 we choose for this comparison is practically irrelevant. 
The predicted filament velocities from all the corrected schemes differ only in the sixth 
relevant digit. 

In figure 5.2 (b) we display the velocity difference ( u ~ & ~  - v::,.) between the 
asymptotic and the corrected numerical predictions on an appropriate blown-up scale. 
The maximum deviation is less than i.e. it is less than about 0.3%, of the 
maximum filament velocity from figure 4. We observe that this remaining deviation has 
a distinctive spatial structure that is dominated by two sinusoidal contributions with 
wavenumbers [ = 2 and 6. In fact, Fourier analysis of the graph in figure 5(b) shows 
that the amplitudes of all other modes are smaller by at least a factor of &, than those 
of modes 2 and 6.  We recall from the preceding discussion that deviations between the 
asymptotic and numerical predictions can be due to errors in either the local or non- 
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FIGURE 6. Scaling of the Fourier modes with wavenumbers 2 and 6 of the deviation between the 
predictions from the K & M theory and from the improved thin-tube model. 

local contributions to the filament velocity. Local errors must inherit the periodicity 
features of the curve geometry, so that only the mode-2 contribution to the deviations 
in figure 5(b)  can be of local nature. As a consequence, the mode-6 deviation reflects 
the error of the K & M  linearization of the finite part of the Biot-Savart integral in 
(2.9), (2.10). 

Validity of the Klein-Majda theory 
For 6 = 0.1 the effective amplitude-wavelength ratio of the filament geometry from 

(5.4) is 0.1/4n x 8 x lop3 and, as expected, the linearization of the Biot-Savart integral 
provides a very good approximation. Next, we investigate the scaling of the deviations 
between the K & M  theory and the corrected thin-tube model as the amplitude, 6, of 
the sinusoidal displacement varies. To this end, we consider the sequence of amplitudes 
cl = 0.01, 0.1, 1.0 and 4.0 and Fourier-analyse the velocity difference (u"""-ut$r). 
Figure 6 shows, in a double-logarithmic representation, the dependence of the mode- 
2 and mode-6 amplitudes of this deviation as a function of a". For mode-6 the amplitude 
scales precisely with the third power of cl. For mode-2 this is true at larger values of 
the amplitude, while for cl = 0.01 a deviation from the third-power scaling occurs. We 
conjecture that this deviation is due to the fact that mode-2 includes both local and 
non-local errors, and that the results are affected by discretization errors which are 
small, but scale with less than the third power of a". These errors become relevant only 
for very small amplitudes. 

For the present class of plane sinusoidal displacements there is an amplitude 
threshold beyond which the linearization errors from the K & M theory become 
comparable to our local corrections to the numerical scheme. Figure 7 shows the 
velocity differences (uK&" - uttm) and (uK&" - ut?:) for a" = 1 .O. We observe that, by 
using the corrected thin-tube model, one can still remove the largest discrepancies 
between the standard thin-tube scheme and the theoretical prediction. The remainder 
is of the same order of magnitude as the local corrections, but in absolute value it is 
only about 2% of the maximum induced filament velocity. Thus, the theory yields 
acceptably accurate approximations up to amplitudes a" = 1.0 for the present plane 
curve geometry and for the present choice of the expansion parameters 6 x lop2 and 
c2 x 0.25. The comparison of the temporal evolution of filaments with plane curve 
initial data in the following subsection will include one case with amplitude a" = 1 .O. As 
shown below, the convincing agreement between theory and numerical predictions 
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FIGURE 7. Deviations between the theoretical and numerical filament velocity predictions for the 
sinusoidal plane curve geometry from (5.4) with e2 z 0.25 and ii = 1 .O : comparison of the K & M 
theory with the standard and improved thin-tube models. 

achieved in this example can also be observed in unsteady experiments, showing that 
the dynamical evolution of the slender filament is also appropriately captured by the 
asymptotic theory at the border of its validity. 

5.3.  Comparison of dynamic predictions 
In this section we consider the temporal evolution of slender vortices with plane curve 
initial perturbations of the filament reference lines. First we use the sinusoidal 
distortions from the previous section to demonstrate that the K & M asymptotics and 
corrected thin-tube predictions are in much closer agreement than theory and 
uncorrected thin-tube model. We then use more general initial data for an extensive 
comparison of numerical and theoretical predictions including, in particular, one set of 
initial data that is formally outside the regime of validity of the asymptotics. 

All the results in this section are based on a spatial resolution of 1024 nodes in the 
thin-tube vortex element computations and 512 gridpoints in the evaluations of the 
asymptotic filament equation from (2.12). We emphasize that, except for the third 
example with initial data from (5.9b) below, this is almost an overkill of resolution for 
the asymptotics and that practically equivalent results can be obtained even with 128 
gridpoints. 

An important aspect of the present comparisons concerns the time scaling. The 
asymptotic theory involves several time rescalings and a special choice of spatial 
coordinates suitable for an efficient numerical implementation. For a successful 
quantitative comparison, these factors have to be appropriately accounted for. We 
summarize the space-time rescalings used in our computations in Appendix B. The 
transformations given there are used to map thin-tube model results into the 
coordinate system constructed in the asymptotic theory. Dynamic predictions are 
compared in the corresponding space-time system, unlike the static comparison 
experiments which have been conducted above in normalized physical space. 

Sinusoidal plane curve distortions 
Here we consider the plane curve initial data from (5.4) with a" = 1.0. Figure 8(a)  

shows the time evolution of the maximum curvature of the filament reference line. The 
time variable in the graph is the Klein-Majda time coordinate, 7, from (2.8). As 
mentioned above, there is qualitative agreement between all three prediction methods 
- the K & M asymptotics, the standard thin-tube model and the improved numerical 
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FIGURE 8. Time histories of the maximum curvature in the computational domain based on the 
asymptotic and standard and corrected thin-tube predictions for the sinusoidal plane curve initial 
data from (5.4) with d = 1.0: (a) direct output from numerical computations, (b) comparison with 
individually rescaled time variables so as to remove a systematic timescaling error. 

scheme from 94.2. The differences between the curves may be attributed to two distinct 
effects. One is a systematic time delay, the other is the net deviation between the curves 
after deletion of this time delay through a suitable time rescaling. To separate the two 
effects, we display in figure 8 (b) the same data as in figure 8 (a), but with an individual 
time rescaling applied to each curve, so that the last local minima (around 7 = 0.6) 
coincide in the rescaled time. Thus, for each graph we define a related time variable 

where I replaces one of K &  M ,  ttm, or ttm, corr and where 7Yf is the time at which the 
last local minimum occurs on the K & M curve in figure 8 (a). From the graphs of figure 
8 (b) it becomes even more apparent that the K & M asymptotic and corrected thin-tube 
predictions practically coincide, whereas there is a considerable deviation for the 
standard thin-tube model. Notice that the additional time rescaling applied here is 
purely ad hoc and, in contrast to the derivations in Appendix B, does not reflect a 
systematic scale transformation obtained by analytic considerations. The trans- 
formation from figure 8 (a) to 8 (b) just emphasizes the fact that two types of deviations 
between the different predictions occur: a time delay and a shape error. 

Figure 9(a, b) demonstrates that there is also close agreement between the theoretical 
and corrected numerical results in the spatial solution structure. The graphs include the 
spatial distribution of the filament curvature at the output times T = 0.3968 (a) and 
7 = 0.5284 (b) for the corrected thin-tube computation. These results are compared with 

7; = +yf, (5.6) 
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FIGURE 9. Spatial curvature distributions from asymptotic theory (K & M) and from the corrected 
thin-tube computations (ttm, corr) for the same initial data used to generate figure 8 at two output 
times chosen for equal values of .:(I = K & M  or ttrnlcorr) from (5.6): (a) 7 = 0.3968 (ttm/corr), 
T = 0.4062 (K&M); (b) T = 0.5284 (ttm/corr), T = 0.5409 (K&M). 

the K & M asymptotic predictions for equal values of the 7;. The associated output 
times for the asymptotic computation are 7 = 0.4062 (a) and 7 = 0.5409 (b). The very 
close agreement is obvious; the largest relative difference between the two curvature 
distributions in figure 9(a), when scaled with the maximum curvature from this plot, 
is no more than 1.6 YO. 

Klein & Majda (1991 a, b) emphasize that their asymptotic theory includes the (non- 
local) effects of vortex self-stretching. The quadratically nonlinear functional 

(5.7) 

of the filament function from (2.13) describes the local rate of self-stretching with 
relative errors of O(E), given the exact filament function. In thin-tube simulations, the 
extension of individual vortex elements is used as a direct measure for the local rates 
of stretching. In the straight-segment approximation, the stretching of the elements is 

4 'sm -mlhl - 
1 .  
-I(a,7) = c2- - [ ~ ( ~ + h , 7 ) ~ ( ( ~ , 7 ) - - ( ( ~ , 7 ) ~ ( a + h , 7 ) ] d h  I 

( 5 . 8 ~ )  

while (5.8b) 
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FIGURE 10. Time histories of the maximum local stretching rate in the computational domain based 
on the asymptotic and standard and corrected thin-tube predictions for the sinusoidal plane curve 
initial data from (5.4) with d = 1.0. 
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FIGURE 11. Time histories of the maximum curvature in the computational domain based on the 
asymptotic and standard and corrected thin-tube predictions for the two-mode plane curve initial 
data from (5.9 a) : (a) direct output from numerical computations; (b) comparison with individually 
rescaled time variables so as to remove a systematic timescaling error. 

is used in conjection with spectral representation. In figure 10 we compare the time 
histories of the maximum local stretching rate in the domain of integration obtained 
via asymptotic theory, and the standard and corrected thin-tube computations. There 
is still qualitative agreement and, in particular, the structure of the third hump of the 
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FIGURE 12. Spatial curvature distributions from asymptotic theory (K& M) and from the corrected 
thin-tube computations (ttmlcorr) for the same initial data used to generate figure 11 at two output 
times chosen for equal values of 7: ( I  = K &  M ,  ttmlcorr) from (5.6): (a) T = 0.3598 (ttm/corr), 
T = 0.3719 (K&M); (b) 7 = 0.4716 (ttm/corr), 7 = 0.4874 (K&M). 

curves is very similar in the asymptotic and corrected numerical result. However, the 
agreement is not as good as that established for the maximum curvature histories from 
figure 8. One reason for this may be the fact that only one linearization is involved 
in producing the curvature histories asymptotically, while two consecutive lin- 
earizations are applied in generating the stretch rate histories : in going from the 
original filament equations of motion to the Klein-Majda filament equation with self- 
stretch from (2.12) one has to linearize the finite part of the Biot-Savart integral. Using 
the resulting filament function to generate the stretch rate distributions according to 
(5.7) involves another linearization that is explained in detail by Klein & Majda 
(1991b). Hence one can expect larger deviations between the asymptotics and the 
corrected thin-tube stretching rate predictions than were observed for the curvature 
histories. 

Two-mode plane curve displacements 
Here we consider filament reference line initial data of the form 

X(s) = st, + c2[sin ( s / E )  + sin (~s/E)] no (5.9a) 

and X(s) = st, +.?[sin ( ~ s / E )  +sin (3s/e)] no, (5.9b) 

and again we let 6' = 0.25. Figure 11 (a, b) displays the time history of the maximum 
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FIGURE 13. Time histories of the maximum curvature in the computational domain based on the 
asymptotic and standard and corrected thin-tube predictions for the two-mode plane curve initial 
data from (5.9 6 )  : (a) direct output from numerical computations, (b) comparison with individually 
rescaled time variables so as to remove a systematic timescaling error. 

curvature for the initial data from (5.9a) as obtained from the asymptotics and from 
the corrected thin-tube model computation. As in figure 8 the first graph compares the 
direct output from the computational codes, while figure 11 (b) shows the same curves 
after an individual time rescaling similar to that described in (5.6) above. Here we have 
used the time for the appearance of the second local minimum of the curvature 
histories as a reference time. The agreement is again very satisfactory. Figure 12(a, b) 
shows comparisons of spatial curvature distributions at output times 7 = 0.3598 (a)  
and 7 = 0.4716 (b) for the corrected thin-tube computation. For equal values of the 7: 
this corresponds to output times 7 = 0.3719 and 7 = 0.4874, respectively, in the 
K 8z M asymptotics. Again the agreement between theory and computation is quite 
convincing, even though the maximum curvature is now in the range of K = 4.5 during 
most of the computation. With the geometry expansion parameter as large as s2 = 0.25, 
this is at the border of validity of the asymptotics. 

The initial data from (5.9b) represent a severe test for the asymptotic theory, because 
the maximum initial curvature is max,K(g,O) z 19.0. Considering that this value is 
larger than 1/s2 by a factor of about five, we find that this example should be outside 
the regime of validity of the asymptotics. Agreement between asymptotic and 
numerical predictions may therefore be expected to be at most qualitative, and this is 
what we in fact observe. Figure 13(a, b) displays the time history of the maximum 
curvature in the same way as discussed earlier. Again we find qualitative agreement 
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FIGURE 14. Spatial curvature distributions from asymptotic theory (K & M) and from the corrected 
thin-tube computations (ttrnlcorr) for the initial data from figure 13 at an output time chosen for 
equal values of 7: ( I  = K & M ,  ttmlcorr) from (5.6): T = 0.09341 (ttmlcorr), 7 = 0.1055 (K&M). 
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FIGURE 15. Fourier spectra of the filament function in the computation of figures 13 and 14, for 
the initial data and at time 7 = 0.1055. 

between asymptotic theory and thin-tube model results. The principal difference 
between the curves is that the theoretical prediction involves a much rougher 
development of the curvature maximum, with pronounced kinks in the graph. These 
are smoothed out in the curvature history from the corrected thin-tube model. We 
conjecture that the rougher solution structure from the theory is due to the neglect of 
nonlinear contributions to the finite part of the Biot-Savart integral which are 
accounted for correctly in the numerical scheme and which may have an important 
dispersive effect. 

Figure 14 shows the spatial curvature distributions for equal 7; corresponding to 
7 = 0.09341 in the numerical computation and 7 = 0.1055 in the numerical solution of 
the filament equation. We also observe a qualitative agreement and that the small-scale 
structure of the K & M asymptotic solution is much rougher than that of the thin-tube 
model prediction. To elucidate this point in more detail, we display in figure 15 the 
Fourier spectra of the filament function at times 7 = 0.0 (+) and 7 = 0.1055 (lines from 
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zero), the latter corresponding to the output time in figure 14. At time zero the 
spectrum includes non-zero contributions at wavenumbers larger than [ = 50, which is 
roughly the wavenumber associated with the vortex core diameter for e2 = 0.25 
according to Klein & Majda (1991 b). Notice that a smooth Fourier spectrum for the 
filament function occurs in these cases, even though the geometrical initial data involve 
only one or two discrete modes. This is due to the transformation from the straight- 
line coordinate in the description of the initial geometry to the arclength variable 
required in the implementation of the Hasimoto transformation. 

Since the asymptotic theory is based on the assumption that the characteristic 
wavelengths for the filament function are long compared to the vortex core size, it is 
clear that the current example strongly stresses the applicability of the analysis. An 
interesting observation is that at the later time (lines from zero) the spectrum has 
narrowed, so that apparently the Fourier modes with wavenumbers larger than the 
core size scale are damped in the evolution under the filament equation. This shows 
that the asymptotic theory is robust in the sense that initial data outside the regime of 
validity of the asymptotics are automatically driven back into the correct range. We 
remind the reader that Klein & Majda (1991 b) show by explicit examples that in the 
wavenumber range below the core size scale, 0 < [ < &,,, z 50, there is an energy 
transfer from long to short waves, which appears to be reversed outside of this range 
of wavenumbers following the present results. 

In conclusion we find that 
(i) the local corrections to the standard thin-tube model yield good agreement 

between numerical and asymptotic predictions in dynamical computations even 
in a regime close to the border of validity of the asymptotic theory; 

(ii) even well outside the formal regime of validity the asymptotic theory yields 
satisfactory qualitative insights into the filament dynamics. 

In addition, we emphasize that the present results exhibit clearly the power of 
asymptotic analysis. The thin-tube model computations of this section require roughly 
on the order of one CPU hour on a CRAY C90 each, while the solutions to the 
asymptotic filament equation have been generated within minutes on a MacIntosh IIci 
desktop computer or within seconds on an HP 9000 series workstation. Computational 
difficulties associated with thin-tube modelling are discussed in more detail in the 
following section. 

6.  Discussion 
In this section, we discuss the key issues of the asymptotic treatment of the vorticity 

transport equation and the resulting insight which, in particular, led to the formulation 
and construction of the corrected thin-tube models of 93. 

6.1. Slender cores and the asymptotic treatment of the vorticity transport equation 
Despite its simplicity, the notion of a ‘ slender vortex with leading-order axisymmetric 
core structure’ is not as intuitive as it appears. One potential source of difficulty, which 
had to be overcome during the course of this effort, stems from the fact that in a large 
number of situations one is given (or would like to assign) a complete description of 
the core vorticity distribution. This is the case for the thin-tube model, which ‘inherits’ 
- by ‘butchering’ its parent, the vortex element method - a core vorticity distribution 
whose shape is dictated by the choice of core smoothing function. Since, as in the 
vortex element method, it is emphasized that the standard thin-tube model relies on 
exact evaluation of the line Biot-Savart integral over the discretized smooth vorticity 
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field, it is only natural to wonder, for example, why is it that a 'correction' is needed 
at all? From a purely mathematical point of view, the need for correction of the 
filament propagation velocity predicted by the standard thin tube model can be 
motivated and justified on the basis of the construction itself. Below, we first 
summarize this construction and then return to address the question at hand based on 
the insight gained from this exercise. 

Construction of velocity corrections 
The theoretical foundation of the improved thin-tube model presented here is the 

new asymptotic analysis of the vorticity structure of slender vortices as described in $92 
and 3, which summarizes the calculations by Klein (1994) and Klein et al. (1994). In 
a first step this analysis shows that the filament velocity is identical to the induced 
velocity on a certain curve, called the connecting line of stagnation points, that is 
located within an 0(a2) vicinity of the vortex centre. This induced velocity is shown to 
consist of a local and a non-local contribution, i.e. 

x, = c,Kb+Q,. (6.1) 

The non-local finite part of the line Biot-Savart integral, Q,, depends solely on the 
overall circulation, r, of the vortex and on the instantaneous filament geometry. The 
local part is proportional to the product Kb of the curvature and the local binormal unit 
vector. The factor of proportionality is 

C, = In (2/6) + C, (6.2) 

where In (2/6) is a scaling contribution determined by the characteristic diameter 6 of 
the vortex core and C is the linear functional of the leading- and first-order axial 
vorticities ccO) and gi) from (3.23). 

These formulae for the filament velocity are the direct result of a suitable asymptotic 
evaluation of the Biot-Savart integral applied to a vector field cr) that is concentrated 
along a smooth space curve and is to leading-order axisymmetric with respect to this 
reference curve. This vector field may or not satisfy the vorticity transport equation, 
but if it does, we have the relevant results describing the motion of a slender vortex. 
The key observation leading to our proposed improvement of the thin-tube model is 
that the vortex element node velocities in the standard scheme are obtained precisely 
by doing just that, namely by evaluating the Biot-Savart integral at the nodes, based 
on the numerical vorticity distribution uttm from (4.1). 

An asymptotic analysis for small 6 of this vector field uniquely identifies the 
numerical leading-order axisymmetric vorticity < ( ' ) q t t m ( y ' )  in terms of the vorticity 
smoothing function f ,  from (4.4), (5.3). Similarly it provides the numerical first-order 
vorticity component yl:)sttm($ Thus, all the formulae for the filament velocity cited 
above apply and yield an explicit asymptotic representation of the numerical node 
velocity that can be compared directly with the physically correct expressions. 

Since Q, depends only on the overall circulation and on the filament geometry, this 
part of the filament velocity is handled with high accuracy by the numerical scheme. 
Two errors arise in the local part, both of which are responsible for leading-order 
deviations from the physically correct filament velocity. The first error is that the vortex 
element nodes do not lie on the connecting line of stagnation points within the 
numerical vortex core. The second error is due to a false prediction of the first-order 
vorticity mode ci:) in the numerical scheme. In fact, the physical <g)(r) is determined 
by a balance of convection and vortex stretching in the filament core, while the 
numerical mode lJi),t'm(y') is due solely to the geometrical deformation of the 
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overlapping vortex elements as shown in $4. Thus, c2stt"(q + c?(F), even if one can 
achieve agreement between Q O ) y t t " ( F )  and Q o ) ( F )  through a suitable choice of the 
numerical vorticity smoothing function. 

Having identified these error sources, we are able to suggest three different 
modifications of the standard thin-tube model that are not equivalent, but all reduce 
the leading-order errors discussed above down to O(6). 

(i) Velocity corrections. By comparison of the asymptotic formulae (6. l), (6.2), 
(3.23), (3.21 ; with p = 1) for the local induced velocities when applied to the physical 
and numerical vorticity structures, determine a velocity defect. Add this defect velocity 
to the induced node velocities from the standard thin-tube model. 

(ii) Node corrections. Determine the location of the local stagnation point in the 
numerical vortex core closest to a vortex element node and evaluate the Biot-Savart 
integral at this corrected location. Then move the node at this velocity. 

(iii) Rescaled standard model. Observe that the only relevant quantity carrying the 
vortex core structure information is In (2/6) + C or equivalently, the parameter c 
defined by 

(6.3) 

which also appears as the relevant expansion parameter in the Klein-Majda 
asymptotics discussed in $2. Given the correct physical value of C and of Cttm as 
computed from the numerical leading- and first-order vorticities according to (3.23), 
adjust the numerical core size parameter in such a way that 

e2 = [In (246) + q-', 

In (2/6) + C = In (2/6tt") + Cttm or 8'" = Gexp (Cttm - C). (6-4) 

Then run the standard thin-tube model with the asymptotically rescaled numerical 
vortex core size. 

Versions (i) and (ii) require discrete computations of the filament curvature and of 
the local normal and binormal vectors, while version (iii) just involves a rescaling of the 
parameters, but no modification to the computational code. Therefore, version (iii) is 
the easiest to implement and the most elegant, but its application requires a very careful 
consideration and distinction between numerical and physical core structures and core 
sizes. 

The need for  velocity corrections 
As can be appreciated from the summary provided above, the predictions of the 

standard thin-tube model must be corrected because the model formulation in fact 
assumes 'too much'. On one hand, the construction of the thin-tube model yields a 
frozen (time-independent) leading-order axisymmetric vorticity distribution. It has 
been shown by Callegari & Ting (1978) that the core structure is generally time 
dependent, and by Klein & Ting (1992) that the filament asymptotics even allows for 
axial variations of the core structure (see also Ting & Klein 1991). Only in very special 
regimes, such as that considered by Klein & Majda (1991 a,  b) and in this paper, is it 
true that the core structure may be considered constant in space and time on the 
relevant timescales. In the standard thin-tube model, one further assumes that the node 
locations used in the formulations coincide with the local relative core stagnation 
point. By doing so, one implicitly assumes that the first-order vorticity distribution at 
the node location is consistent with the prevailing leading-order numerical vorticity 
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distribution and with the vorticity transport equation. Unfortunately, the asymptotic 
analyses of both the quasi-steady vorticity transport equation and the numerical 
vorticity distribution reveal, by direct computation, that this is not the case. In other 
words, the thin-tube first-order vorticity distribution which one also inherits in the 
course of the numerical construction is not consistent with the assumption that the 
node coincides with the local relative stagnation point. Consequently, the velocity 
predictions must somehow be corrected. 

A key element in our construction and implementation of thin-tube velocity 
corrections is our ability to fully characterize the leading- and first-order core 
numerical vorticity distributions and to compare directly with an asymptotic treatment 
which is based on the same quantities. Thus, we are able to formulate three different 
corrections strategies : (a) explicit velocity corrections, (b) node-stagnation point 
corrections, and (c) re-scaled core radius. In implementing the first and second 
corrections, it is natural to identify the physical with the numerical leading-order core 
structure. This is by no means a necessary condition. In fact, one only needs agreement 
in the effective value of the expansion parameter E in order to obtain correct predictions 
of the filament velocity, and this insight is at the core of the third correction strategy. 

All of the correction strategies shown above achieve, through different means, this 
desired result. However, it should be noted that assuming the numerical and the 
physical leading-order vorticity distributions to coincide does not imply that the 
numerical first-order vorticity distribution is automatically relevant or meaningful as 
well. Nor does it imply that the node-to-stagnation-point displacement derived above 
is a physically meaningful quantity. This is not a consequence of any deficiency in the 
asymptotic analysis but rather due to the fact that the first-order core vorticity 
distribution of the thin-tube model is a purely numerical entity. 

Further interpretations and Fraenkel’s analysis of slender vortex rings 
It should be emphasized that the first-order vorticity distribution I!J:)(~) derived 

during the course of the asymptotic treatment of the vorticity transport equation is 
defined with respect to the local core stagnation point. In the development of the 
asymptotic theory, determination of the exact location of this point - with respect to, 
for example, the filament reference line - is neither necessary nor performed. All that 
is in fact required is the existence of such a point within an inner O(P)  core surrounding 
the reference line. Since this ‘apparent flexibility’ in the asymptotic analysis may be the 
source of some confusion, it is worthwhile providing further interpretation of the role 
of the first-order vorticity distribution. 

One attractive interpretation is to view the role of the first-order vorticity distribution 
as fixing the spatial location of the local stagnation point. In other words, if the correct 
first-order vorticity distribution at the node is specified, then our asymptotic treatment 
of the vorticity transport equation naturally provides the correct node-to-stagnation- 
point separation distance. In order to support this statement, we compare our 
asymptotic predictions of node-stagnation separation distance with those of Fraenkel 
(1972) who analysed, using a completely different approach, the propagation of 
steady vortex rings. 

In Fraenkel’s analysis, thin rings of nearly circular core cross-section are assumed, 
as well as a ‘constant’ core vorticity distribution: 

w b )  = w I , = , K ~ ( F , Q ) )  for 0 < F= r / S  < 1, (6.5) 
where K is the curvature of the ring reference line, p ( ~ ,  v) denotes the distances from the 
axis of the vortex ring and (r,cp) are the filament-attached radial and circumferential 
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coordinates as introduced in 93. Using the notation and definitions of the asymptotic 
analysis, the leading-order vorticity distribution of the slender ring is constant, 

p = r / n ,  (6.6) 

KS(o) (0 )  TCOS (?I, 0 < v < 1 ,  (6.7) 

while the first-order distribution with respect to the core centroid is given by 
p , c e n t r o i d  = - 

Associated with the leading-order axisymmetric vorticity distribution of (6.6) is the 
leading-order axisymmetric velocity field : 

Substituting (6.9) into (3.33) and performing the integrals, we obtain the core structure 
coefficient, 

C = - L  4'  (6.10) 

As expected, this is the same constant that appears in Kelvin's formula for the self- 
induced propagation velocity of rings of constant vorticity. Meanwhile, inserting (6.6) 
and (6.8) into (1.8) yields a core structure coefficient, 

C c e n t r o i d  = 1. (6.1 1) 

When appropriately substituted into (4.1 l), (4.12), the core structure coefficients of 
(6.10) and (6.11) immediately enable us to estimate the centroid-stagnation point 
displacement ; we have 

P s t a g n a t i o n  = P e e n t r o i d  +gs 5 2  K *  (6.12) 

This is essentially the same result summarized by (6.21) in the analysis of Fraenkel, who 
estimated the ratio of core centroid radius to stagnation point radius as 

= 1 - y +  ..., P c e n t r o i d  

P s t a g n a t i o n  

(6.13) 

where E' denotes the core-to-radius ratio of the slender ring. 

Additional remarks 

The above discussion immediately enables us to highlight several key features 
regarding both the asymptotic theory and the resulting thin-tube corrections. 

(i) The successful comparison with asymptotic theories for slender rings underscores 
the fact that our asymptotic treatment of the vorticity transport equation is not limited 
by any assumptions regarding the shape of the filament reference line or regarding the 
form of the imposed perturbations. In addition, since the thin-tube model corrections 
derived on the basis of the analysis are of a local nature, these corrections immediately 
generalize to any slender vortex filament, irrespective of its background geometry or of 
imposed perturbations. The only requirement that must be satisfied is that the vortex 
filament be in fact slender, i.e. the core radius is significantly smaller than the radius 
of curvature. 

(ii) An immediate consequence of the above statement, and of the analyses of 94, is 
that the asymptotic corrections derived here yield consistent thin-tube models. By 
consistent, we mean that (a) the predicted propagation velocity is consistent with a 
solution to the vorticity transport equation under the given assumptions regarding the 
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FIGURE 16. Comparison of static velocity predictions for the plane curve initial data from (5.4) using 
the third-order Gaussian and the sech2 (P)-core smoothing functions for both the standard (solid line) 
and the improved (dotted line) thin tube models. 
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FIGURE 17. Comparison of time histories of the maximum curvature in the computational domain 
for thin-tube model predictions based on different correction methods. 

relevant evolution timescales for the filament, and (b) the computational predictions 
are independent of the desingularization of the line Biot-Savart integral. 

The latter assertion is examined in figures 16 and 17, in which we analyse velocity 
predictions obtained using different core smoothing functions. In figure 16, we plot the 
static velocity predictions for the plane sinusoidal displacements from (5.4) using the 
third-order Gaussian and sech2 (P) core functions from (5.3) for both the standard and 
improved thin-tube models. The graph shows the velocity differences - v ~ ~ $ p )  for 
the standard model (solid line) and for the corrected scheme (dotted line). While the 
relative deviation for the standard model is of the order of the deviations for the 
corrected schemes are about three orders of magnitude smaller. In the graph this curve 
appears just as a zero line. The differences between the corrected scheme predictions 
from equal core functions but different correction approaches are another order of 
magnitude smaller (not shown). (We also omit displaying several experiments 
conducted at much higher perturbation amplitudes which also show that the agreement 
between different correction strategies and different core smoothing functions persists 
for perturbations well outside the K & M perturbation regime.) 

Figure 17 shows the time history of the maximum curvature for a computation with 
the plane curve distortions from figure 16 as initial data. The two curves for the 



314 R. Klein and 0. M .  Knio 

corrected thin-tube schemes with Gaussian and sech’ (P) core functions coincide within 
the graphical resolution. The relative deviations are less than 5 x For completeness 
we have included the curve obtained with the standard model in order to exhibit the 
considerable modification introduced by the asymptotic corrections and to emphasize 
that all corrections yield the same modification for all practical purposes. 

(iii) It is interesting to note that both the local core structure (and the asymptotic 
corrections) are completely characterized by the expansion parameter 6 ,  which reflects 
the impact of both the core size and the prevailing vorticity distribution. In this work, 
we have focused on large-Reynolds-number vortices r/v = O(S-1’2), and filament 
geometries for which 6 is effectively constant on the relevant length- and timescales. In 
general, e depends on space and time and its evolution can be described only by solving 
a suitable system of vortex core evolution equations, coupled with the filament 
dynamics, see e.g. Callegari & Ting (1978) or Ting & Klein (1991). Such general 
situations will be considered in future work (Klein et al. 1994), and compared with 
various ad hoc approximations for the evolution of the vortex core diameter, for 
example on a conservation-of-volume constraint. 

(iv) It is also interesting to note that self-induced velocity errors associated with 
desingularized line Biot-Savart integrals have been known for quite some time. A well- 
known example arises in the ‘cut-off’ formula proposed by Rosenhead (1930): 

(6.14) 

where the parameter ,LA = 1 is typically associated with uniform cores of radius 6. The 
inability of this desingularization form to predict the self-induced velocity of thin rings 
of constant vorticity has been discussed by Saffman (1992), although until now the 
origin of such errors has remained mysterious. 

We emphasize that the asymptotic analyses presented in $02-3 can be used to derive, 
elegantly, appropriate corrections for the Rosenhead desingularization, and to justify 
ad hoc parameter selection in cut-off approximations. Although within immediate 
reach, we do not pursue these objectives here. The primary reason for avoiding the 
Rosenhead cut-off is that, unlike the adopted desingularization, explicit velocity- 
vorticity relations are not available, so that the construction of velocity corrections 
must rely on several cumbersome numerical integration and differentiation procedures. 
Meanwhile, the cut-off approach is avoided for computational reasons. Numerical 
implementation of this approach requires an arclength representation of the filament 
reference line. In conjunction with a Lagrangian approach which is based on direct 
evaluation of the line Biot-Savart integral, the latter requirement leads to an 
unnecessarily clumsy computational algorithm. 

6.2. Computational perspectives 
Numerical implementation of Lagrangian thin-tube models is far from trivial. Here we 
provide a brief discussion - solely from a computational perspective - of the origin of 
numerical difficulties and of means to overcome them. 

Resolution requirements 
In numerically modelling the evolution of slender vortices using the thin-tube 

approach, one is faced with severe spatial resolution requirements. These derive from 
the vortex element method whose convergence requires, in particular, that neigh- 
bouring vortex elements maintain overlapping cores (Beale & Majda 1982a, 6; Beale 
1986; Greengard 1986; Ghoniem et al. 1988; Knio & Ghoniem 1991). From a practical 
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point of view, these resolution requirements result in one major computational 
disadvantage: the simulation must generally carry a very large number of nodes in 
order to ensure a proper representation of the local core structure, i.e. one that is 
effectively independent of the numerical discretization. Since in the present case, the 
local core dynamics are quasi-steady and can be accounted for through a time- 
independent core structure coefficient, the adopted discretization is essentially ' over- 
refined'. By this, we mean that the number of degrees of freedom used by the thin-tube 
model is much larger than that required to model the relevant dynamics, which occur 
at lengthscales much larger than the local core structure. Ideally, one would like to 
carry a number of elements just large enough to ensure that the slender filament 
geometry is well represented, and that the numerical evaluation of the non-local part 
of the line Biot-Savart integral is converged. In the present versions of the thin-tube 
model, these requirements are simply not sufficient. Consequently, it is not surprising 
that the number of vortex elements needed to ensure spatial convergence in the present 
thin-tube simulations ( N  - 1000) is roughly one order of magnitude larger than the 
number of modes needed for spatial convergence of the corresponding slender core 
asymptotic simulations ( N  - 100). Though a suitable analytical representation of the 
local core dynamics, the asymptotics have in fact achieved a significant advantage over 
the thin-tube model. This advantage is further highlighted by the fact that a single time 
step in the thin-tube model requires O(N2)  operations, while only O(N1og N )  
operations are needed in the asymptotics simulations. 

While several approaches aimed at overcoming the above disadvantage may be 
formulated (these are inspired by the asymptotics), we have opted not to pursue such 
options in the present work. One primary reason is that maintaining overlapping cores 
guarantees the convergence of thin-tube simulations. Below, we re-examine this 
statement in view of results obtained using the thin-tube model with spectral 
representation of the filament geometry as given in $4.4. 

Spectral representation of the filament geometry 
In developing the improved thin-tube schemes we have not only implemented the 

asymptotic corrections mentioned in $4, but we have also introduced an important 
improvement of the numerical discretization that yields rapid convergence of the 
results with increasing node number. This modification consists of a spectral 
representation of the curve geometry, which is used both in the evaluation of arclength 
derivatives and the line Biot-Savart integral. The implementation is based on a Fourier 
representation of the node locations, which is self-suggesting since periodic 
perturbations are considered. The modification is also motivated by a desire to obtain 
smooth and accurate description of arclength derivatives, particularly for the first two 
versions of the corrected schemes, because the corrections rely on explicit computations 
of local curvatures and of the filament attached basis vectors ( t ,  n, b). 

In the light of detailed numerical experimentation, we have established that the 
spectral code yields much more rapid convergence of the results as long as we consider 
long-wave data. This is the case, because any variation of the filament geometry on 
lengthscales comparable to the core diameter means that we have left the regime of 
validity of the general slenderness assumption, which is the basis of all the asymptotic 
as well as numerical predictions in this paper. We emphasize that the improved 
convergence of the method is not limited to the corrected thin-tube models, but also 
extends to the standard scheme since the numerical evaluation of the line Biot-Savart 
integral also takes advantage of the spectral representation of the filament geometry. 

These features are demonstrated in figure 18, which shows velocity differences for the 
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FIGURE 18. Convergence study for the thin-tube models with standard physical space and spectral 
geometry representation based on static velocity predictions for the plane curve initial data used in 
figure 16 using 2048 and 1024 nodes. 

static case similar to figure 16. We display velocity differences between numerical 
predictions based on 1024 and 2048 elements. The solid line has been generated with 
the standard physical space geometry representation of Knio & Ghoniem (1990). The 
resolution refinement by a factor of two still induces relative changes of the predicted 
node velocities of the order lo-’. The dotted line shows the effect of the same 
refinement on the spectral code predictions. We find that these results are practically 
converged with relative changes being smaller than 2 x 

Stigness of the system 
The resolution requirements of the thin tube models are compounded by numerical 

integration difficulties associated with the stiffness of the system of evolution equations 
for the Lagrangian coordinates of the elements. Since most of these problems are 
‘generic’ of a large number of Lagrangian conservation law problems, only a brief 
summary of relevant items is provided. 

(i) The stiffness of the system of governing equations necessitates an excessively 
small integration time step. In the thin-tube computations, we have adopted a variable- 
step second-order predictor-corrector scheme, and have imposed a time-step constraint 
of the form At = 98tm/lumazl, 9 < 1 .  Through detailed numerical experimentation 
(not shown), small values 9 < 0.02 are found necessary to ensure a convergent time 
integration; we have thus used 9 = 0.02 in all thin-tube calculations discussed above. 
Thus, the maximum displacement of a node during a single time step is only a small 
fraction of the vortex core size. 

It should be noted that the above time-step restriction requires, in particular, that the 
numerical integration resolves timescales that are much smaller than the vortex core 
turnover timescale. Since the core dynamics are assumed to be quasi-steady, and since 
the filament geometry evolves at significantly larger timescales than those cha- 
racterizing the rapidly rotating slender core, the present restrictions are extremely 
severe. This severity can be further highlighted by comparison with asymptotic 
simulations, which enable simple explicit split-step semi-spectral implementation with 
timesteps scaling with the actual characteristic evolution time of the filament to be 
employed (Klein & Majda 199 1 b). For a typical computational experiment from 0 5 the 
ratio of timesteps Att tm/AtK&M z &. 

It should also be noted that the variable-step algorithm incorporated in the 
computations may not constitute the optimal approach for tackling the stiffness of the 
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system. However, owing to the simplicity of the adopted approach, we did not explore 
more sophisticated time-integration algorithms. 

(ii) The stiffness of the system of governing equations is compounded by the 
susceptibility of the computations to round-off errors. The origin of this latter problem 
appears to be due to two related issues. The first is associated with the resolution 
requirements discussed above, which necessitate a very large number of spatial modes. 
The second is due to the evaluation of the filament velocity which is based on direct 
summation over the fields of all the elements. Since neighbouring elements induce large 
O(S2)  velocities on each other, the calculation relies on the cancellation of 0(6-2) 
velocity components in order to estimate an O(ln (1/6)) filament velocity. As discussed 
below, the susceptibility of the computations to round-off errors complicates the 
implementation of the spectral algorithm to unsteady simulations, and motivates 
further refinement of the numerical scheme. 

(iii) We finally note that the ‘symptoms’ of time-integration problems are easy to 
detect. Through detailed numerical experimentation (not shown), two distinct 
manifestations of time-integration problems can be observed. The first mild symptom, 
which consists of the appearance of high-frequency numerical noise in the computed 
solution, occurs once the integration time step slightly exceeds a threshold value. The 
selection of even larger time steps leads to a catastrophic breakdown of the 
computations. This breakdown occurs as a result of an unphysical overturning wave 
which leads to the local collapse of the filament on itself. However, since a brute-force 
systematic time-step reduction approach easily cures these difficulties, further 
discussion of these numerical phenomena is omitted. 

Nonlinear filtering 
The improved properties of the spectral algorithm established in static experiments 

do not immediately extend to time-dependent calculations. Despite the fact that the 
spectral representation yields very accurate velocity predictions, a straightforward 
implementation of these techniques and of the velocity corrections is found to have a 
destabilizing impact on the computations. This destabilization is weakly affected by 
time discretization errors; on the other hand, high-frequency round-off errors have a 
strong negative impact on this phenomenon. Thus, decreasing already minute 
integration errors through further reduction of the time step does not completely cure 
the problem. This motivates the incorporation of a nonlinear filtering procedure in 
order to remove high-frequency noise. 

The adopted filtering procedure developed here is an extension of the two- 
dimensional version proposed by Krasny (1983). The algorithm acts on the Fourier 
components of the curve geometry by identifying and eliminating, at every integration 
time step, all modes having amplitude below a prescribed threshold. Reliable and 
robust results have been obtained with an elimination threshold of 10-l2. We 
emphasize that this small value is at the limit of resolution of a single-precision 
representation on a CRAY C90 where thin-tube computations have been carried out. 
Thus, no sizable numerical damping is introduced; rather, high-frequency noise is 
eliminated once it is generated. 

It is finally emphasized that, for all the cases considered here, the incorporation of 
the filtering algorithm into the original straight-segment representation scheme is not 
necessary. This is not surprising since in the latter approach, spectral collocation 
differentiation of high-frequency noise is not performed. Furthermore, through 
favourable comparison of the results of well-resolved straight segment and spectral 
representation simulations, we note that the nonlinear filtering procedure used in this 
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work does not prevent the generation of higher frequency modes through relevant 
nonlinear phenomena, but prevents their introduction due to numerical errors. This 
observation is in agreement with Krasny's (1983) experience gained through the 
application of similar schemes to the study of singularity formation in two-dimensional 
vortex sheets. 

The authors thank Professors Lu Ting and Andrew J. Majda for their en- 
couragement and for stimulating discussions during the initial stages of this research. 
Furthermore they are indebted to the Pittsburgh Supercomputing Center, where all of 
the thin-tube model computations were performed. 

Appendix A. Periodic boundary conditions for the thin-tube model 
Another distinctive feature of the present thin-tube model computations concerns 

the treatment of periodic boundary conditions. When L-periodic perturbations of a 
thin filament are considered, the computational domain is defined by a single channel 
of height L along the periodicity direction and it is unbounded in the remaining two. 
In order to enforce the periodicity of the velocity field, the image system of the vortex 
elements outside the computational domain must be accounted for when the formula 
in (4.5) is evaluated. To this end, we assume the periodicity direction to coincide with 
the x-direction of a right-handed coordinate system (x, y ,  z )  with basis vectors (el, e,, 
e3), and consider the velocity component, uo, induced by a single vortex element of 
length Sx = (Ax, Ay, Az) centred at f = (x , ,yo ,  z,). We have 

r +a, 
uo(x> = - C PW - X ,  SX, k)  QW - X ,  k) ,  (A 1) 

47c k=O 

where 

and Q(X, k)  = Kd(x + kLe1). (A 3) 
In (A l), the contribution of the image system of the element is handled exactly. 
Unfortunately, the infinite sum appearing in this expression does not admit a simple 
closed form expression as was shown by Knio & Ghoniem (1991, 1992). To overcome 
this difficulty, we first decompose the sum into two components, u1 and u,, which 
respectively correspond to the contributions of the element itself and of its image 
system. The first component is computed directly, 

while the second is first approximated as 
r + w  

i.e. the effect of the core smoothing function is neglected from the contribution of the 
image system since we assume L 9 6. After straightforward manipulations, (A 5 )  is 
rewritten as 

r 
u,(x) = - [F(x, - x, y ,  -Y, 2, - z )  {W - x) x Sx> - AzG(x, - x, y ,  -Y, zo -4  e, 47c 

+L?LYG(Xo-X,y,-Y,Zo-Z)e,I, (A 6 )  
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where 

In a preprocessing step, the functions F and G are evaluated numerically by truncating 
the summation at a large index. The computed values are stored in two-dimensional 
arrays which are interpolated during the computations. The truncation of the 
summation is done such that the contributions of the 500 images closest to the 
computational domain in each direction are accounted for. The evaluation of the sums 
is performed on a fine grid in order to minimize interpolation errors. This necessitates 
a somewhat large storage requirement, which is optimized by only tabulating half the 
needed values and exploiting the following relationships : 

(A 9) 

(A 10) 

The technique detailed above yields estimates of the velocity component induced by 
the entire image system of a single element. To obtain the total velocity field, 
summation over the image systems of all the elements must be performed. In doing so, 
the vortex interaction algorithm ensures that the assumption that the core smoothing 
function acts on the nearest vortex element is satisfied by using the following technique. 
In order to estimate the velocity field at a point z inside the computational domain, the 
algorithm first performs a translation of the entire domain along the periodicity 
direction, x+x’ = x + d ,  so that z’ coincides with the centre of the original domain. 
This coordinate translation is also applied to the Lagrangian locations of the vortex 
elements. Based on the translated locations, the algorithm identifies exactly the 
members of all image systems which lie within the original computational domain. The 
locations of these elements are then used in the summation described above. This 
procedure enables us to enforce periodicity boundary conditions accurately, since exact 
expressions are tabulated almost to within machine accuracy and interpolated on fine 
grids, and efficiently, since the required computational overhead represents a small 
fraction of the effort needed to compute vortex interactions in an unbounded domain. 

F(x, - x, Y o  -Y, z, - 4 = 41x, - XI, IY, -YL 1% - 41, 
G(xo - x, Y o  --Y, z ,  - 4 = sign (x, - x) G(lx, - XI, I Y o  - -YL IZ, - 4). 

Appendix B. Space-time rescaling for comparison of theoretical and 
numerical predictions 

define the reference time 
A typical radius of curvature R of the filament reference line and its cirulation T 

tref = 4 n R 2 / r  (B 1) 

which is used as characteristic timescale and normalizing quantity in thin-tube model 
computations. Meanwhile, the reference time used by the K & M  theory, which 
characterizes the oscillations of O ( 2 )  perturbations away from a straight line is, 
according to (2.9), 

with c defined in (1.12). 
The plane curve initial data from (5.4) and (5.9a, b) are periodic with period 2n in 

the s-coordinate, which is a linear coordinate on the unperturbed straight line. This 
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periodicity structure is suitable for the thin-tube computations, but it is not convenient 
for the numerical solution of the filament equation. The relevant spatial coordinate in 
(2.12) is an arclength variable and the semi-spectral algorithm for the solution 
frequently uses fast Fourier transforms and the exact solution of the linear part of 
(2.12) in Fourier space. The code we use is designed for 2n-periodic data. In order to 
avoid implementing cumbersome modifications to the code, we employ the following 
scale transformations which map the filament function into a 2n-periodic image that 
also solves (2.12), but with a rescaled value of 2. 

Thus, let 
y = d / 2 n  (B 3) 

be the ratio of the arclength d within a period of the initial filament reference line and 
the desired period length 2n after rescaling. Now, if +(q, 7) solves (2.12), then 

$*(g*, 7*) = y+(g, 7) (B 4) 

with g* = g / y  and 7* = (l+e2lny)7/y2 (B 5)  

also solves the filament equation, but with the rescaled value of the coupling parameter 

(B 6)  €*2 = c 2 /(1+e21ny). 

A tedious but straightforward calculation shows that this rescaling of the coupling 
parameter occurs because of the Heaviside step function in the definition of the I- 
operator in (2.10). 
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